-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagents_ghost.py
97 lines (71 loc) · 2.97 KB
/
agents_ghost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from pacumen.mechanics.agent import Agent
from pacumen.mechanics.agent_action import Actions
from pacumen.library.counter import Counter
from pacumen.mechanics.agent_direction import Direction
from pacumen.library.utilities import raise_not_defined, choose_from_distribution, manhattan_distance
class GhostAgent(Agent):
def __init__(self, index):
self.index = index
super().__init__(index)
def get_action(self, state):
distribution = self.get_distribution(state)
# noinspection PyTypeChecker
if len(distribution) == 0:
return Direction.STOP
else:
return choose_from_distribution(distribution)
# noinspection PyMethodMayBeStatic
# noinspection PyUnusedLocal
def get_distribution(self, state):
"""
This method must return a Counter that encodes a distribution over
actions from the provided state. This must be implemented by any
ghost agent.
"""
raise_not_defined()
class RandomGhost(GhostAgent):
"""
A ghost that chooses a legal action uniformly at random.
"""
def get_distribution(self, state):
distribution = Counter()
for action in state.get_legal_actions(self.index):
distribution[action] = 1.0
distribution.normalize()
return distribution
class DirectionalGhost(GhostAgent):
"""
A ghost that will try to rush at Pacumen but will flee when scared.
"""
def __init__(self, index, prob_attack=0.8, prob_scared_flee=0.8):
self.prob_attack = prob_attack
self.prob_scared_flee = prob_scared_flee
super().__init__(index)
def get_distribution(self, state):
ghost_state = state.get_ghost_state(self.index)
legal_actions = state.get_legal_actions(self.index)
position = state.get_ghost_position(self.index)
is_scared = ghost_state.scared_timer > 0
speed = 1
if is_scared:
speed = 0.5
action_vectors = [Actions.direction_to_vector(a, speed) for a in legal_actions]
new_positions = [(position[0] + a[0], position[1] + a[1]) for a in action_vectors]
pacumen_position = state.get_pacumen_position()
# Select best actions given the state.
pacumen_distance = [manhattan_distance(pos, pacumen_position) for pos in new_positions]
if is_scared:
best_score = max(pacumen_distance)
best_prob = self.prob_scared_flee
else:
best_score = min(pacumen_distance)
best_prob = self.prob_attack
best_actions = [action for action, distance in zip(legal_actions, pacumen_distance) if distance == best_score]
# Construct distribution.
distribution = Counter()
for a in best_actions:
distribution[a] = best_prob / len(best_actions)
for a in legal_actions:
distribution[a] += (1 - best_prob) / len(legal_actions)
distribution.normalize()
return distribution