-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathcreate_palabos_input_file.py
325 lines (272 loc) · 12.2 KB
/
create_palabos_input_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def create_palabos_input_file(inputs):
if inputs['simulation type'] == '1-phase':
input_file_name = '1_phase_sim_input.xml'
create_one_phase_input_file(inputs, input_file_name)
elif inputs['simulation type'] == '2-phase':
input_file_name = '2_phase_sim_input.xml'
create_two_phase_input_file(inputs, input_file_name)
elif inputs['simulation type'] == 'rel perm':
input_file_name = 'relperm_input.xml'
create_relperm_input_file(inputs, input_file_name)
return
def create_one_phase_input_file(inputs, input_file_name):
geom_name = inputs['domain']['geom name']
nx = inputs['domain']['domain size']['nx']
ny = inputs['domain']['domain size']['ny']
nz = inputs['domain']['domain size']['nz']
num_layers = inputs['domain']['inlet and outlet layers']
domain_size = [nx+(2*num_layers), ny, nz]
per_x = inputs['domain']['periodic boundary']['x']
per_y = inputs['domain']['periodic boundary']['y']
per_z = inputs['domain']['periodic boundary']['z']
periodic = [per_x, per_y, per_z]
io_folders = [inputs['input output']['input folder'], inputs['input output']['output folder']]
# perm_model = inputs['simulation']['perm model']
num_geoms_or_sims = inputs['simulation']['num geoms']
pressure = inputs['simulation']['pressure']
max_iter = inputs['simulation']['max iterations']
convergence = inputs['simulation']['convergence']
save_vtks = inputs['simulation']['save vtks']
# Parse geometry inputs
x_size = domain_size[0]
y_size = domain_size[1]
z_size = domain_size[2]
periodic_x = periodic[0]
periodic_y = periodic[1]
periodic_z = periodic[2]
# Parse i/o inputs
input_folder = io_folders[0]
output_folder = io_folders[1]
# Create/open input file
file = open(f'{input_folder}{input_file_name}', 'w')
file.write('<?xml version="1.0" ?>\n\n') # Write xml header
# Write geometry section
file.write('<geometry>\n')
# Geometry name
file.write(f'\t<file_geom> {geom_name} </file_geom>\n')
# Geometry size
file.write(f'\t<size> <x> {x_size} </x> <y> {y_size} </y> <z> {z_size} </z> </size>\n')
# Periodicity
file.write(f'\t<per> <x> {periodic_x} </x> <y> {periodic_y} </y> <z> {periodic_z} </z> </per>\n')
file.write('</geometry>\n\n')
# Write i/o section
file.write('<folder>\n')
# Input folder name
file.write(f'\t<in_f> {input_folder} </in_f>\n')
# Output folder name
file.write(f'\t<out_f> {output_folder} </out_f>\n')
file.write('</folder>\n\n')
# Write simulation section
file.write('<simulations>\n')
# # Permeability model
# file.write(f'\t<perm_model> {perm_model} </perm_model>\n')
# Number of sims/geometries
file.write(f'\t<num> {num_geoms_or_sims} </num>\n')
# Pressure
file.write(f'\t<press> {pressure} </press>\n')
# Max simulation iterations
file.write(f'\t<iter> {max_iter} </iter>\n')
# Convergence
file.write(f'\t<conv> {convergence} </conv>\n')
# Save vtks
file.write(f'\t<vtk_out> {save_vtks} </vtk_out>\n')
file.write('</simulations>')
file.close()
return
def create_two_phase_input_file(inputs, input_file_name):
geom_name = inputs['domain']['geom name']
nx = inputs['domain']['domain size']['nx']
ny = inputs['domain']['domain size']['ny']
nz = inputs['domain']['domain size']['nz']
num_layers = inputs['domain']['inlet and outlet layers']
domain_size = [nx+(2*num_layers), ny, nz]
per_x = inputs['domain']['periodic boundary']['x']
per_y = inputs['domain']['periodic boundary']['y']
per_z = inputs['domain']['periodic boundary']['z']
periodic = [per_x, per_y, per_z]
io_folders = [inputs['input output']['input folder'], inputs['input output']['output folder']]
restart_sim = inputs['simulation']['restart sim']
rho_f1 = inputs['simulation']['rho_f1']
rho_f2 = inputs['simulation']['rho_f2']
force_f1 = inputs['simulation']['force_f1']
force_f2 = inputs['simulation']['force_f2']
pressure_bc = inputs['simulation']['pressure bc']
if pressure_bc == True:
minimum_radius = inputs['simulation']['minimum radius']
num_pc_steps = inputs['simulation']['num pressure steps']
else:
minimum_radius = 1
num_pc_steps = 0
load_fluid_type = inputs["simulation"]["fluid init"]
if load_fluid_type == 'geom':
load_fluid_from_geom = True
else:
load_fluid_from_geom = False
fluid1_x1 = inputs['simulation']['fluid 1 init']['x1']
fluid1_x2 = inputs['simulation']['fluid 1 init']['x2']
fluid1_y1 = inputs['simulation']['fluid 1 init']['y1']
fluid1_y2 = inputs['simulation']['fluid 1 init']['y2']
fluid1_z1 = inputs['simulation']['fluid 1 init']['z1']
fluid1_z2 = inputs['simulation']['fluid 1 init']['z2']
fluid2_x1 = inputs['simulation']['fluid 2 init']['x1']
fluid2_x2 = inputs['simulation']['fluid 2 init']['x2']
fluid2_y1 = inputs['simulation']['fluid 2 init']['y1']
fluid2_y2 = inputs['simulation']['fluid 2 init']['y2']
fluid2_z1 = inputs['simulation']['fluid 2 init']['z1']
fluid2_z2 = inputs['simulation']['fluid 2 init']['z2']
Gc = inputs['simulation']['fluid data']['Gc']
omega_f1 = inputs['simulation']['fluid data']['omega_f1']
omega_f2 = inputs['simulation']['fluid data']['omega_f2']
G_ads_f1_s1 = inputs['simulation']['fluid data']['G_ads_f1_s1']
G_ads_f1_s2 = inputs['simulation']['fluid data']['G_ads_f1_s2']
G_ads_f1_s3 = inputs['simulation']['fluid data']['G_ads_f1_s3']
G_ads_f1_s4 = inputs['simulation']['fluid data']['G_ads_f1_s4']
convergence = inputs['simulation']['convergence']
convergence_iter = inputs['simulation']['convergence iter']
max_iter = inputs['simulation']['max iterations']
save_sim = inputs['simulation']['save sim']
save_iter = inputs['simulation']['save iter']
gif_iter = inputs['simulation']['gif iter']
vtk_iter = inputs['simulation']['vtk iter']
rho_f2_vtk = inputs['simulation']['rho_f2_vtk']
print_geom = inputs['simulation']['print geom']
print_stl = inputs['simulation']['print stl']
# Parse geometry inputs
x_size = domain_size[0]
y_size = domain_size[1]
z_size = domain_size[2]
periodic_x = periodic[0]
periodic_y = periodic[1]
periodic_z = periodic[2]
# Parse i/o inputs
input_folder = io_folders[0]
output_folder = io_folders[1]
# Create/open input file
file = open(f'{input_folder}{input_file_name}', 'w')
file.write('<?xml version="1.0" ?>\n\n') # Write xml header
# Restart sim?
file.write(f'<load_savedstated> {restart_sim} </load_savedstated>\n\n')
# Write geometry section
file.write('<geometry>\n')
# Geometry name
file.write(f'\t<file_geom> {input_folder}{geom_name}.dat </file_geom>\n')
# Geometry size
file.write(f'\t<size> <x> {x_size} </x> <y> {y_size} </y> <z> {z_size} </z> </size>\n')
# Periodicity
file.write(f'\t<per>\n')
file.write(f'\t\t<fluid1> <x> {periodic_x} </x> <y> {periodic_y} </y> <z> {periodic_z} </z> </fluid1>\n')
file.write(f'\t\t<fluid2> <x> {periodic_x} </x> <y> {periodic_y} </y> <z> {periodic_z} </z> </fluid2>\n')
file.write(f'\t</per>\n')
file.write('</geometry>\n\n')
# Write initial position of fluids
file.write(f'<init>\n')
file.write(f'\t<fluid_from_geom> {load_fluid_from_geom} </fluid_from_geom>\n')
file.write(f'\t<fluid1>\n')
file.write(f'\t\t <x1> {fluid1_x1} </x1> <y1> {fluid1_y1} </y1> <z1> {fluid1_z1} </z1>\n')
file.write(f'\t\t <x2> {fluid1_x2} </x2> <y2> {fluid1_y2} </y2> <z2> {fluid1_z2} </z2>\n')
file.write(f'\t</fluid1>\n')
file.write(f'\t<fluid2>\n')
file.write(f'\t\t <x1> {fluid2_x1} </x1> <y1> {fluid2_y1} </y1> <z1> {fluid2_z1} </z1>\n')
file.write(f'\t\t <x2> {fluid2_x2} </x2> <y2> {fluid2_y2} </y2> <z2> {fluid2_z2} </z2>\n')
file.write(f'\t</fluid2>\n')
file.write('</init>\n\n')
# Write fluid data
file.write('<fluids>\n')
file.write(f'\t<Gc> {Gc} </Gc>\n')
file.write(f'\t<omega_f1> {omega_f1} </omega_f1>\n')
file.write(f'\t<omega_f2> {omega_f2} </omega_f2>\n')
file.write(f'\t<force_f1> {force_f1} </force_f1>\n')
file.write(f'\t<force_f2> {force_f2} </force_f2>\n')
file.write(f'\t<G_ads_f1_s1> {G_ads_f1_s1} </G_ads_f1_s1>\n')
file.write(f'\t<G_ads_f1_s2> {G_ads_f1_s2} </G_ads_f1_s2>\n')
file.write(f'\t<G_ads_f1_s3> {G_ads_f1_s3} </G_ads_f1_s3>\n')
file.write(f'\t<G_ads_f1_s4> {G_ads_f1_s4} </G_ads_f1_s4>\n')
file.write(f'\t<rho_f1> {rho_f1} </rho_f1>\n')
file.write(f'\t<rho_f2> {rho_f2} </rho_f2>\n')
file.write(f'\t<pressure_bc> {pressure_bc} </pressure_bc>\n')
file.write(f'\t<rho_f1_i> {rho_f1} </rho_f1_i>\n')
file.write(f'\t<rho_f2_i> {rho_f2} </rho_f2_i>\n')
file.write(f'\t<num_pc_steps> {num_pc_steps} </num_pc_steps>\n')
file.write(f'\t<min_radius> {minimum_radius} </min_radius>\n')
file.write(f'\t<rho_d> 0.06 </rho_d>\n')
file.write('</fluids>\n\n')
# Write output section
file.write('<output>\n')
file.write(f'\t<out_folder> {output_folder} </out_folder>\n')
file.write(f'\t<save_it> {save_iter} </save_it>\n')
file.write(f'\t<save_sim> {save_sim} </save_sim>\n')
file.write(f'\t<convergence> {convergence} </convergence>\n')
file.write(f'\t<it_max> {max_iter} </it_max>\n')
file.write(f'\t<it_conv> {convergence_iter} </it_conv>\n')
file.write(f'\t<it_gif> {gif_iter} </it_gif>\n')
file.write(f'\t<rho_vtk> {rho_f2_vtk} </rho_vtk>\n')
file.write(f'\t<it_vtk> {vtk_iter} </it_vtk>\n')
file.write(f'\t<print_geom> {print_geom} </print_geom>\n')
file.write(f'\t<print_stl> {print_stl} </print_stl>\n')
file.write('</output>')
file.close()
return
def create_relperm_input_file(inputs, input_file_name):
geom_name = inputs['domain']['geom name']
nx = inputs['domain']['domain size']['nx']
ny = inputs['domain']['domain size']['ny']
nz = inputs['domain']['domain size']['nz']
num_layers = 2
domain_size = [nx+(2*num_layers), ny, nz]
per_x = inputs['domain']['periodic boundary']['x']
per_y = inputs['domain']['periodic boundary']['y']
per_z = inputs['domain']['periodic boundary']['z']
periodic = [per_x, per_y, per_z]
io_folders = [inputs['input output']['input folder'], inputs['input output']['output folder']]
# perm_model = inputs['simulation']['perm model']
num_geoms_or_sims = inputs['rel perm']['num_geoms']
pressure = inputs['rel perm']['pressure']
max_iter = inputs['rel perm']['max iterations']
convergence = inputs['rel perm']['convergence']
save_vtks = inputs['rel perm']['save vtks']
# Parse geometry inputs
x_size = domain_size[0]
y_size = domain_size[1]
z_size = domain_size[2]
periodic_x = periodic[0]
periodic_y = periodic[1]
periodic_z = periodic[2]
# Parse i/o inputs
input_folder = io_folders[0]
output_folder = io_folders[1] + '4relperm/'
# Create/open input file
file = open(f'{input_folder}{input_file_name}', 'w')
file.write('<?xml version="1.0" ?>\n\n') # Write xml header
# Write geometry section
file.write('<geometry>\n')
# Geometry name
file.write(f'\t<file_geom> {geom_name} </file_geom>\n')
# Geometry size
file.write(f'\t<size> <x> {x_size} </x> <y> {y_size} </y> <z> {z_size} </z> </size>\n')
# Periodicity
file.write(f'\t<per> <x> {periodic_x} </x> <y> {periodic_y} </y> <z> {periodic_z} </z> </per>\n')
file.write('</geometry>\n\n')
# Write i/o section
file.write('<folder>\n')
# Input folder name
file.write(f'\t<in_f> {input_folder} </in_f>\n')
# Output folder name
file.write(f'\t<out_f> {output_folder} </out_f>\n')
file.write('</folder>\n\n')
# Write simulation section
file.write('<simulations>\n')
# # Permeability model
# file.write(f'\t<perm_model> {perm_model} </perm_model>\n')
# Number of sims/geometries
file.write(f'\t<num> {num_geoms_or_sims} </num>\n')
# Pressure
file.write(f'\t<press> {pressure} </press>\n')
# Max simulation iterations
file.write(f'\t<iter> {max_iter} </iter>\n')
# Convergence
file.write(f'\t<conv> {convergence} </conv>\n')
# Save vtks
file.write(f'\t<vtk_out> {save_vtks} </vtk_out>\n')
file.write('</simulations>')
file.close()
return