forked from facebookresearch/co-tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonline_demo.py
104 lines (90 loc) · 3.18 KB
/
online_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
import argparse
import imageio.v3 as iio
import numpy as np
from cotracker.utils.visualizer import Visualizer
from cotracker.predictor import CoTrackerOnlinePredictor
DEFAULT_DEVICE = (
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--video_path",
default="./assets/apple.mp4",
help="path to a video",
)
parser.add_argument(
"--checkpoint",
default=None,
help="CoTracker model parameters",
)
parser.add_argument("--grid_size", type=int, default=10, help="Regular grid size")
parser.add_argument(
"--grid_query_frame",
type=int,
default=0,
help="Compute dense and grid tracks starting from this frame",
)
args = parser.parse_args()
if not os.path.isfile(args.video_path):
raise ValueError("Video file does not exist")
if args.checkpoint is not None:
model = CoTrackerOnlinePredictor(checkpoint=args.checkpoint)
else:
model = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online")
model = model.to(DEFAULT_DEVICE)
window_frames = []
def _process_step(window_frames, is_first_step, grid_size, grid_query_frame):
video_chunk = (
torch.tensor(
np.stack(window_frames[-model.step * 2 :]), device=DEFAULT_DEVICE
)
.float()
.permute(0, 3, 1, 2)[None]
) # (1, T, 3, H, W)
return model(
video_chunk,
is_first_step=is_first_step,
grid_size=grid_size,
grid_query_frame=grid_query_frame,
)
# Iterating over video frames, processing one window at a time:
is_first_step = True
for i, frame in enumerate(
iio.imiter(
args.video_path,
plugin="FFMPEG",
)
):
if i % model.step == 0 and i != 0:
pred_tracks, pred_visibility = _process_step(
window_frames,
is_first_step,
grid_size=args.grid_size,
grid_query_frame=args.grid_query_frame,
)
is_first_step = False
window_frames.append(frame)
# Processing the final video frames in case video length is not a multiple of model.step
pred_tracks, pred_visibility = _process_step(
window_frames[-(i % model.step) - model.step - 1 :],
is_first_step,
grid_size=args.grid_size,
grid_query_frame=args.grid_query_frame,
)
print("Tracks are computed")
# save a video with predicted tracks
seq_name = args.video_path.split("/")[-1]
video = torch.tensor(np.stack(window_frames), device=DEFAULT_DEVICE).permute(
0, 3, 1, 2
)[None]
vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3)
vis.visualize(
video, pred_tracks, pred_visibility, query_frame=args.grid_query_frame
)