-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
337 lines (301 loc) · 18.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import numpy as np
from scipy.stats import wishart, multivariate_normal
import matplotlib.pyplot as plt
from tool import calc_ari,cmx
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics.cluster import adjusted_rand_score as ari
import torch
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.utils.data.dataset import Subset
import argparse
from tool import visualize_gmm
parser = argparse.ArgumentParser(description='Symbol emergence based on VAE+GMM Example')
parser.add_argument('--batch-size', type=int, default=10, metavar='B', help='input batch size for training')
parser.add_argument('--vae-iter', type=int, default=50, metavar='V', help='number of VAE iteration')
parser.add_argument('--mh-iter', type=int, default=50, metavar='M', help='number of M-H mgmm iteration')
parser.add_argument('--category', type=int, default=10, metavar='K', help='number of category for GMM module')
parser.add_argument('--mode', type=int, default=-1, metavar='M', help='0:All reject, 1:ALL accept')
parser.add_argument('--debug', type=bool, default=False, metavar='D', help='Debug mode')
parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training')
parser.add_argument('--seed', type=int, default=2, metavar='S', help='random seed')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
print("CUDA",args.cuda)
if args.debug is True: args.vae_iter=2; args.mh_iter=2
############################## Making directory ##############################
file_name = "debug"; model_dir = "./model"; dir_name = "./model/"+file_name
graphA_dir = "./model/"+file_name+"/graphA"; graphB_dir = "./model/"+file_name+"/graphB"
pth_dir = "./model/"+file_name+"/pth";npy_dir = "./model/"+file_name+"/npy"
reconA_dir = model_dir+"/"+file_name+"/reconA"; reconB_dir = model_dir+"/"+file_name+"/reconB"
log_dir = model_dir+"/"+file_name+"/log"; result_dir = model_dir+"/"+file_name+"/result"
if not os.path.exists(model_dir): os.mkdir(model_dir)
if not os.path.exists(dir_name): os.mkdir(dir_name)
if not os.path.exists(pth_dir): os.mkdir(pth_dir)
if not os.path.exists(graphA_dir): os.mkdir(graphA_dir)
if not os.path.exists(graphB_dir): os.mkdir(graphB_dir)
if not os.path.exists(npy_dir): os.mkdir(npy_dir)
if not os.path.exists(reconA_dir): os.mkdir(reconA_dir)
if not os.path.exists(reconB_dir): os.mkdir(reconB_dir)
if not os.path.exists(log_dir): os.mkdir(log_dir)
if not os.path.exists(result_dir): os.mkdir(result_dir)
############################## Prepareing Dataset #############################
# MNIST
print("Dataset : MNIST")
angle_a = 0 # MNIST's angle for Agent A
angle_b = 45 # MNIST's angle for Agent B
trans_ang1 = transforms.Compose([transforms.RandomRotation(degrees=(angle_a, angle_a)), transforms.ToTensor()])
trans_ang2 = transforms.Compose([transforms.RandomRotation(degrees=(angle_b, angle_b)), transforms.ToTensor()])
# Define datasets
trainval_dataset1 = datasets.MNIST('./../data', train=True, transform=trans_ang1, download=True) # Dataset for Agent A
trainval_dataset2 = datasets.MNIST('./../data', train=True, transform=trans_ang2, download=True) # Dataset for Agent B
n_samples = len(trainval_dataset1)
D = int(n_samples * (1/6)) # Total data
subset1_indices1 = list(range(0, D)); subset2_indices1 = list(range(D, n_samples))
subset1_indices2 = list(range(0, D)); subset2_indices2 = list(range(D, n_samples))
train_dataset1 = Subset(trainval_dataset1, subset1_indices1); val_dataset1 = Subset(trainval_dataset1, subset2_indices1)
train_dataset2 = Subset(trainval_dataset2, subset1_indices1); val_dataset2 = Subset(trainval_dataset2, subset2_indices2)
train_loader1 = torch.utils.data.DataLoader(train_dataset1, batch_size=args.batch_size, shuffle=False) # train_loader for agent A
train_loader2 = torch.utils.data.DataLoader(train_dataset2, batch_size=args.batch_size, shuffle=False) # train_loader for agent B
all_loader1 = torch.utils.data.DataLoader(train_dataset1, batch_size=D, shuffle=False)
all_loader2 = torch.utils.data.DataLoader(train_dataset2, batch_size=D, shuffle=False)
print(f"Total data:{D}, Category:{args.category}")
print(f"VAE_iter:{args.vae_iter}, Batch_size:{args.batch_size}")
print(f"MH_iter:{args.mh_iter}, MH_mode:{args.mode}(-1:Com 0:No-com 1:All accept)")
import cnn_vae_module_mnist
mutual_iteration = 1
mu_d_A = np.zeros((D)); var_d_A = np.zeros((D))
mu_d_B = np.zeros((D)); var_d_B = np.zeros((D))
for it in range(mutual_iteration):
print(f"------------------Mutual learning session {it} begins------------------")
############################## Training VAE ##############################
c_nd_A, label, loss_list = cnn_vae_module_mnist.train(
iteration=it, # Current iteration
gmm_mu=torch.from_numpy(mu_d_A), gmm_var=torch.from_numpy(var_d_A), # mu and var estimated by Multimodal-GMM
epoch=args.vae_iter,
train_loader=train_loader1, batch_size=args.batch_size, all_loader=all_loader1,
model_dir=dir_name, agent="A"
)
# VAE module on Agent B
c_nd_B, label, loss_list = cnn_vae_module_mnist.train(
iteration=it, # Current iteration
gmm_mu=torch.from_numpy(mu_d_B), gmm_var=torch.from_numpy(var_d_B), # mu and var estimated by Multimodal-GMM
epoch=args.vae_iter,
train_loader=train_loader2, batch_size=args.batch_size, all_loader=all_loader2,
model_dir=dir_name, agent="B"
)
# Plot latent space
#cnn_vae_module_mnist.plot_latent(iteration=it, all_loader=all_loader1, model_dir=dir_name, agent="A") # plot latent space of VAE on Agent A
#cnn_vae_module_mnist.plot_latent(iteration=it, all_loader=all_loader2, model_dir=dir_name, agent="B") # plot latent space of VAE on Agent B
K = args.category # number of category
z_truth_n = label # true label
dim = len(c_nd_A[0]) # number of dimentions of VAE
############################## Initializing parameters ##############################
# Set hyperparameters
beta = 1.0; m_d_A = np.repeat(0.0, dim); m_d_B = np.repeat(0.0, dim) # Hyperparameters for \mu^A, \mu^B
w_dd_A = np.identity(dim) * 0.1; w_dd_B = np.identity(dim) * 0.1 # Hyperparameters for \Lambda^A, \Lambda^B
nu = dim
# Initializing \mu, \Lambda
mu_kd_A = np.empty((K, dim)); lambda_kdd_A = np.empty((K, dim, dim))
mu_kd_B = np.empty((K, dim)); lambda_kdd_B = np.empty((K, dim, dim))
for k in range(K):
lambda_kdd_A[k] = wishart.rvs(df=nu, scale=w_dd_A, size=1); lambda_kdd_B[k] = wishart.rvs(df=nu, scale=w_dd_B, size=1)
mu_kd_A[k] = np.random.multivariate_normal(mean=m_d_A, cov=np.linalg.inv(beta * lambda_kdd_A[k])).flatten()
mu_kd_B[k] = np.random.multivariate_normal(mean=m_d_B, cov=np.linalg.inv(beta * lambda_kdd_B[k])).flatten()
# Initializing unsampled \w
w_dk_A = np.random.multinomial(1, [1/K]*K, size=D); w_dk_B = np.random.multinomial(1, [1/K]*K, size=D)
# Initializing learning parameters
beta_hat_k_A = np.zeros(K) ;beta_hat_k_B = np.zeros(K)
m_hat_kd_A = np.zeros((K, dim)); m_hat_kd_B = np.zeros((K, dim))
w_hat_kdd_A = np.zeros((K, dim, dim)); w_hat_kdd_B = np.zeros((K, dim, dim))
nu_hat_k_A = np.zeros(K); nu_hat_k_B = np.zeros(K)
tmp_eta_nB = np.zeros((K, D)); eta_dkB = np.zeros((D, K))
tmp_eta_nA = np.zeros((K, D)); eta_dkA = np.zeros((D, K))
cat_liks_A = np.zeros(D); cat_liks_B = np.zeros(D)
mu_d_A = np.zeros((D,dim)); var_d_A = np.zeros((D,dim))
mu_d_B = np.zeros((D,dim)); var_d_B = np.zeros((D,dim))
iteration = args.mh_iter
ARI_A = np.zeros((iteration)); ARI_B = np.zeros((iteration)); concidence = np.zeros((iteration))
accept_count_AtoB = np.zeros((iteration)); accept_count_BtoA = np.zeros((iteration)) # Number of acceptation
############################## M-H algorithm ##############################
print(f"M-H algorithm Start({it}): Epoch:{iteration}")
for i in range(iteration):
pred_label_A = []; pred_label_B = []
count_AtoB = count_BtoA = 0
"""~~~~~~~~~~~~~~~~~~~~~~~~~~~~Speaker:A -> Listener:B~~~~~~~~~~~~~~~~~~~~~~~~~~~~"""
w_dk = np.random.multinomial(1, [1/K]*K, size=D);
for k in range(K):
tmp_eta_nA[k] = np.diag(-0.5 * (c_nd_A - mu_kd_A[k]).dot(lambda_kdd_A[k]).dot((c_nd_A - mu_kd_A[k]).T)).copy()
tmp_eta_nA[k] += 0.5 * np.log(np.linalg.det(lambda_kdd_A[k]) + 1e-7)
eta_dkA[:, k] = np.exp(tmp_eta_nA[k])
eta_dkA /= np.sum(eta_dkA, axis=1, keepdims=True)
for d in range(D):
# sampling w^A
w_dk_A[d] = np.random.multinomial(n=1, pvals=eta_dkA[d], size=1).flatten()
if args.mode == 0:
pred_label_A.append(np.argmax(w_dk_A[d]))
elif args.mode == 1:
w_dk[d] = w_dk_A[d]
count_AtoB = count_AtoB + 1
pred_label_B.append(np.argmax(w_dk[d]))
else:
cat_liks_A[d] = multivariate_normal.pdf(c_nd_B[d],
mean=mu_kd_B[np.argmax(w_dk_A[d])],
cov=np.linalg.inv(lambda_kdd_B[np.argmax(w_dk_A[d])]),
)
cat_liks_B[d] = multivariate_normal.pdf(c_nd_B[d],
mean=mu_kd_B[np.argmax(w_dk_B[d])],
cov=np.linalg.inv(lambda_kdd_B[np.argmax(w_dk_B[d])]),
)
judge_r = cat_liks_A[d] / cat_liks_B[d]
judge_r = min(1, judge_r)
rand_u = np.random.rand()
if judge_r >= rand_u:
w_dk[d] = w_dk_A[d]
count_AtoB = count_AtoB + 1
else:
w_dk[d] = w_dk_B[d]
pred_label_B.append(np.argmax(w_dk[d]))
if args.mode == -1 or args.mode == 1:
for k in range(K):
beta_hat_k_B[k] = np.sum(w_dk[:, k]) + beta; m_hat_kd_B[k] = np.sum(w_dk[:, k] * c_nd_B.T, axis=1)
m_hat_kd_B[k] += beta * m_d_B; m_hat_kd_B[k] /= beta_hat_k_B[k]
tmp_w_dd_B = np.dot((w_dk[:, k] * c_nd_B.T), c_nd_B)
tmp_w_dd_B += beta * np.dot(m_d_B.reshape(dim, 1), m_d_B.reshape(1, dim))
tmp_w_dd_B -= beta_hat_k_B[k] * np.dot(m_hat_kd_B[k].reshape(dim, 1), m_hat_kd_B[k].reshape(1, dim))
tmp_w_dd_B += np.linalg.inv(w_dd_B)
w_hat_kdd_B[k] = np.linalg.inv(tmp_w_dd_B)
nu_hat_k_B[k] = np.sum(w_dk[:, k]) + nu
# sampling \lambda^B and \mu^B
lambda_kdd_B[k] = wishart.rvs(size=1, df=nu_hat_k_B[k], scale=w_hat_kdd_B[k])
mu_kd_B[k] = np.random.multivariate_normal(mean=m_hat_kd_B[k], cov=np.linalg.inv(beta_hat_k_B[k] * lambda_kdd_B[k]), size=1).flatten()
if args.mode == 0:# No com
for k in range(K):
beta_hat_k_A[k] = np.sum(w_dk_A[:, k]) + beta; m_hat_kd_A[k] = np.sum(w_dk_A[:, k] * c_nd_A.T, axis=1)
m_hat_kd_A[k] += beta * m_d_A; m_hat_kd_A[k] /= beta_hat_k_A[k]
tmp_w_dd_A = np.dot((w_dk_A[:, k] * c_nd_A.T), c_nd_A)
tmp_w_dd_A += beta * np.dot(m_d_A.reshape(dim, 1), m_d_A.reshape(1, dim))
tmp_w_dd_A -= beta_hat_k_A[k] * np.dot(m_hat_kd_A[k].reshape(dim, 1), m_hat_kd_A[k].reshape(1, dim))
tmp_w_dd_A += np.linalg.inv(w_dd_A)
w_hat_kdd_A[k] = np.linalg.inv(tmp_w_dd_A)
nu_hat_k_A[k] = np.sum(w_dk_A[:, k]) + nu
# sampling \lambda^A and \mu^A
lambda_kdd_A[k] = wishart.rvs(size=1, df=nu_hat_k_A[k], scale=w_hat_kdd_A[k])
mu_kd_A[k] = np.random.multivariate_normal(mean=m_hat_kd_A[k], cov=np.linalg.inv(beta_hat_k_A[k] * lambda_kdd_A[k]), size=1).flatten()
"""~~~~~~~~~~~~~~~~~~~~~~~~~~~~Speaker:B -> Litener:A~~~~~~~~~~~~~~~~~~~~~~~~~~~~"""
w_dk = np.random.multinomial(1, [1/K]*K, size=D);
for k in range(K):
tmp_eta_nB[k] = np.diag(-0.5 * (c_nd_B - mu_kd_B[k]).dot(lambda_kdd_B[k]).dot((c_nd_B - mu_kd_B[k]).T)).copy()
tmp_eta_nB[k] += 0.5 * np.log(np.linalg.det(lambda_kdd_B[k]) + 1e-7)
eta_dkB[:, k] = np.exp(tmp_eta_nB[k])
eta_dkB /= np.sum(eta_dkB, axis=1, keepdims=True)
for d in range(D):
# sampling w^B
w_dk_B[d] = np.random.multinomial(n=1, pvals=eta_dkB[d], size=1).flatten()
if args.mode == 0:
pred_label_B.append(np.argmax(w_dk_B[d]))
elif args.mode == 1:
w_dk[d] = w_dk_B[d]
count_BtoA = count_BtoA + 1
pred_label_A.append(np.argmax(w_dk[d]))
else:
cat_liks_B[d] = multivariate_normal.pdf(c_nd_A[d],
mean=mu_kd_A[np.argmax(w_dk_B[d])],
cov=np.linalg.inv(lambda_kdd_A[np.argmax(w_dk_B[d])]),
)
cat_liks_A[d] = multivariate_normal.pdf(c_nd_A[d],
mean=mu_kd_A[np.argmax(w_dk_A[d])],
cov=np.linalg.inv(lambda_kdd_A[np.argmax(w_dk_A[d])]),
)
judge_r = cat_liks_B[d] / cat_liks_A[d]
judge_r = min(1, judge_r)
rand_u = np.random.rand()
if judge_r >= rand_u:
w_dk[d] = w_dk_B[d]
count_BtoA = count_BtoA + 1
else:
w_dk[d] = w_dk_A[d]
pred_label_A.append(np.argmax(w_dk[d]))
if args.mode == -1 or args.mode == 1:
for k in range(K):
beta_hat_k_A[k] = np.sum(w_dk[:, k]) + beta; m_hat_kd_A[k] = np.sum(w_dk[:, k] * c_nd_A.T, axis=1)
m_hat_kd_A[k] += beta * m_d_A; m_hat_kd_A[k] /= beta_hat_k_A[k]
tmp_w_dd_A = np.dot((w_dk[:, k] * c_nd_A.T), c_nd_A)
tmp_w_dd_A += beta * np.dot(m_d_A.reshape(dim, 1), m_d_A.reshape(1, dim))
tmp_w_dd_A -= beta_hat_k_A[k] * np.dot(m_hat_kd_A[k].reshape(dim, 1), m_hat_kd_A[k].reshape(1, dim))
tmp_w_dd_A += np.linalg.inv(w_dd_A)
w_hat_kdd_A[k] = np.linalg.inv(tmp_w_dd_A)
nu_hat_k_A[k] = np.sum(w_dk[:, k]) + nu
# sampling \lambda^A and \mu^A
lambda_kdd_A[k] = wishart.rvs(size=1, df=nu_hat_k_A[k], scale=w_hat_kdd_A[k])
mu_kd_A[k] = np.random.multivariate_normal(mean=m_hat_kd_A[k], cov=np.linalg.inv(beta_hat_k_A[k] * lambda_kdd_A[k]), size=1).flatten()
if args.mode == 0:# No com
for k in range(K):
beta_hat_k_B[k] = np.sum(w_dk_B[:, k]) + beta; m_hat_kd_B[k] = np.sum(w_dk_B[:, k] * c_nd_B.T, axis=1)
m_hat_kd_B[k] += beta * m_d_B; m_hat_kd_B[k] /= beta_hat_k_B[k]
tmp_w_dd_B = np.dot((w_dk_B[:, k] * c_nd_B.T), c_nd_B)
tmp_w_dd_B += beta * np.dot(m_d_B.reshape(dim, 1), m_d_B.reshape(1, dim))
tmp_w_dd_B -= beta_hat_k_B[k] * np.dot(m_hat_kd_B[k].reshape(dim, 1), m_hat_kd_B[k].reshape(1, dim))
tmp_w_dd_B += np.linalg.inv(w_dd_B)
w_hat_kdd_B[k] = np.linalg.inv(tmp_w_dd_B)
nu_hat_k_B[k] = np.sum(w_dk_B[:, k]) + nu
# sampling \lambda^A and \mu^A
lambda_kdd_B[k] = wishart.rvs(size=1, df=nu_hat_k_B[k], scale=w_hat_kdd_B[k])
mu_kd_B[k] = np.random.multivariate_normal(mean=m_hat_kd_B[k], cov=np.linalg.inv(beta_hat_k_B[k] * lambda_kdd_B[k]), size=1).flatten()
############################## Evaluation ##############################
_, result_a = calc_ari(pred_label_A, z_truth_n)
_, result_b = calc_ari(pred_label_B, z_truth_n)
# Kappa conncidence
concidence[i] = np.round(cohen_kappa_score(pred_label_A,pred_label_B),3)
# ARI
ARI_A[i] = np.round(ari(z_truth_n, result_a),3); ARI_B[i] = np.round(ari(z_truth_n,result_b),3)
# Number of acceptance
accept_count_AtoB[i] = count_AtoB; accept_count_BtoA[i] = count_BtoA
if i == 0 or (i+1) % 10 == 0 or i == (iteration-1):
print(f"=> Epoch: {i+1}, ARI_A: {ARI_A[i]}, ARI_B: {ARI_B[i]}, Kappa:{concidence[i]}, A2B:{int(accept_count_AtoB[i])}, B2A:{int(accept_count_BtoA[i])}")
for d in range(D):
mu_d_A[d] = mu_kd_A[np.argmax(w_dk[d])]
var_d_A[d] = np.diag(np.linalg.inv(lambda_kdd_A[np.argmax(w_dk[d])]))
mu_d_B[d] = mu_kd_B[np.argmax(w_dk[d])]
var_d_B[d] = np.diag(np.linalg.inv(lambda_kdd_B[np.argmax(w_dk[d])]))
np.save(npy_dir+'/muA_'+str(it)+'.npy', mu_kd_A); np.save(npy_dir+'/muB_'+str(it)+'.npy', mu_kd_B)
np.save(npy_dir+'/lambdaA_'+str(it)+'.npy', lambda_kdd_A); np.save(npy_dir+'/lambdaB_'+str(it)+'.npy', lambda_kdd_B)
np.savetxt(log_dir+"/ariA"+str(it)+".txt", ARI_B, fmt ='%.3f'); np.savetxt(log_dir+"/ariB"+str(it)+".txt", ARI_B, fmt ='%.2f'); np.savetxt(log_dir+"/cappa"+str(it)+".txt", concidence, fmt ='%.2f')
############################## Plot ##############################
# acceptance
plt.figure()
#plt.ylim(0,)
plt.plot(range(0,iteration), accept_count_AtoB, marker="None", label="Accept_num:AtoB")
plt.plot(range(0,iteration), accept_count_BtoA, marker="None", label="Accept_num:BtoA")
plt.xlabel('iteration');plt.ylabel('Number of acceptation')
plt.ylim(0,D)
plt.legend()
plt.savefig(result_dir+'/accept'+str(it)+'.png')
#plt.show()
plt.close()
# concidence
plt.figure()
plt.plot(range(0,iteration), concidence, marker="None")
plt.xlabel('iteration'); plt.ylabel('Concidence')
plt.ylim(0,1)
plt.title('k')
plt.savefig(result_dir+"/conf"+str(it)+".png")
#plt.show()
plt.close()
# ARI
plt.figure()
plt.plot(range(0,iteration), ARI_A, marker="None",label="ARI_A")
plt.plot(range(0,iteration), ARI_B, marker="None",label="ARI_B")
plt.xlabel('iteration'); plt.ylabel('ARI')
plt.ylim(0,1)
plt.legend()
plt.title('ARI')
plt.savefig(result_dir+"/ari"+str(it)+".png")
#plt.show()
plt.close()
cmx(iteration=it, y_true=z_truth_n, y_pred=result_a, agent="A", save_dir=result_dir)
cmx(iteration=it, y_true=z_truth_n, y_pred=result_b, agent="B", save_dir=result_dir)
print(f"Iteration:{it} Done:max_ARI_A: {max(ARI_A)}, max_ARI_B: {max(ARI_B)}, max_Kappa:{max(concidence)}")