-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdata_manager.py
51 lines (50 loc) · 1.63 KB
/
data_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import time
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
import numpy as np
import cv2
import glob
def data_load(filename):
with open(filename, 'r') as File:
infoFile = File.readlines() #reading lines from files
for line in infoFile: #reading line by line
words = line.split(' ')
filenames.append(words[0])
labels.append(words[1])
labels.append(words[2])
labels.append(words[3])
labels.append(words[4])
input_image = []
sess = tf.InteractiveSession()
NumFiles = len(filenames)
#Converting filnames into tensor
tfilenames = ops.convert_to_tensor(filenames, dtype = dtypes.string)
tlabels = ops.convert_to_tensor(labels, dtype=dtypes.string)
#creating a queue which contains the list of files to read and the values of labels
filename_queue = tf.train.slice_input_producer([tfilenames, tlabels], num_epochs=10, shuffle=False, capacity = NumFiles)
#reading image files and decoding them
rawIm = tf.read_file(filename_queue[0])
decodedIm = tf.image.decode_jpeg(rawIm)
lbl = []
#extracting the labels queue
label_queue = filename_queue[1]
sess = tf.InteractiveSession()
with sess.as_default():
flag = 0
lbl_array = []
img_array = []
while(True):
flag = flag + 1
i = 0
for i in range(NumFiles):
if flag<=1:
nm, image, lb = sess.run([filename_queue[0], decodedIm, label_queue])
labels =np.reshape(labels, (-1,4))
lbl = labels[i]
lbl_array.append(lbl)
input_image = (sess.run(tf.reshape(image, [196608])))
img_array.append(input_image)
return img_array,lbl_array