-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
139 lines (105 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import time
import numpy as np
from models import create_model
from data import CreateDataLoader
from util.visualizer import Visualizer
from options.train_options import TrainOptions
def print_log(logger,message):
print(message, flush=True)
if logger:
logger.write(str(message) + '\n')
if __name__ == '__main__':
opt = TrainOptions().parse()
# Load train data
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
print(f'Training set size: {len(data_loader)}')
# Load val data
opt.phase = 'val'
data_loader_val = CreateDataLoader(opt)
dataset_val = data_loader_val.load_data()
print(f'Validation set size: {len(data_loader_val)}')
# Set logger
save_dir = os.path.join(opt.checkpoints_dir, opt.name)
logger = open(os.path.join(save_dir, 'log.txt'), 'w+')
print_log(logger,opt.name)
logger.close()
if opt.model=='cycle_gan':
L1_avg=np.zeros([2,opt.niter + opt.niter_decay,len(dataset_val)])
else:
L1_avg=np.zeros([opt.niter + opt.niter_decay,len(dataset_val)])
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
# Training phase
opt.phase = 'train'
for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
if opt.dataset_mode=='aligned_mat':
temp_visuals=model.get_current_visuals()
visualizer.display_current_results(temp_visuals, epoch, save_result)
elif opt.dataset_mode=='unaligned_mat':
temp_visuals=model.get_current_visuals()
temp_visuals['real_A']=temp_visuals['real_A'][:,:,0:3]
temp_visuals['real_B']=temp_visuals['real_B'][:,:,0:3]
temp_visuals['fake_A']=temp_visuals['fake_A'][:,:,0:3]
temp_visuals['fake_B']=temp_visuals['fake_B'][:,:,0:3]
temp_visuals['rec_A']=temp_visuals['rec_A'][:,:,0:3]
temp_visuals['rec_B']=temp_visuals['rec_B'][:,:,0:3]
if opt.lambda_identity>0:
temp_visuals['idt_A']=temp_visuals['idt_A'][:,:,0:3]
temp_visuals['idt_B']=temp_visuals['idt_B'][:,:,0:3]
visualizer.display_current_results(temp_visuals, epoch, save_result)
else:
temp_visuals=model.get_current_visuals()
visualizer.display_current_results(temp_visuals, epoch, save_result)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / len(data_loader), opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.save('latest')
iter_data_time = time.time()
# Validaiton phase
if epoch % opt.save_epoch_freq == 0:
logger = open(os.path.join(save_dir, 'log.txt'), 'a')
print(opt.dataset_mode)
opt.phase='val'
for i, data_val in enumerate(dataset_val):
model.set_input(data_val)
model.test()
fake_im=model.fake_B.cpu().data.numpy()
real_im=model.real_B.cpu().data.numpy()
real_im=real_im*0.5+0.5
fake_im=fake_im*0.5+0.5
if real_im.max() <= 0:
continue
L1_avg[epoch-1,i]=abs(fake_im-real_im).mean()
l1_avg_loss = np.mean(L1_avg[epoch-1])
print_log(logger,'Epoch %3d l1_avg_loss: %.5f' % (epoch, l1_avg_loss))
print_log(logger,'')
logger.close()
print('saving the model at the end of epoch %d, iters %d' %(epoch, total_steps))
# Save model
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
# Update learning rate
model.update_learning_rate()