forked from mehmetgonen/kbmtl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkbmtl_semisupervised_regression_variational_train.m
70 lines (61 loc) · 2.87 KB
/
kbmtl_semisupervised_regression_variational_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
% Mehmet Gonen ([email protected])
function state = kbmtl_semisupervised_regression_variational_train(K, Y, parameters)
rand('state', parameters.seed); %#ok<RAND>
randn('state', parameters.seed); %#ok<RAND>
D = size(K, 1);
N = size(K, 2);
T = size(Y, 2);
R = parameters.R;
sigma_h = parameters.sigma_h;
sigma_w = parameters.sigma_w;
Lambda.alpha = (parameters.alpha_lambda + 0.5) * ones(D, R);
Lambda.beta = parameters.beta_lambda * ones(D, R);
A.mu = randn(D, R);
A.sigma = repmat(eye(D, D), [1, 1, R]);
H.mu = randn(R, N);
H.sigma = repmat(eye(R, R), [1, 1, N]);
epsilon.alpha = (parameters.alpha_epsilon + 0.5 * sum(~isnan(Y))');
epsilon.beta = parameters.beta_epsilon * ones(T, 1);
W.mu = randn(R, T);
W.sigma = repmat(eye(R, R), [1, 1, T]);
KKT = K * K';
for iter = 1:parameters.iteration
if mod(iter, 1) == 0
fprintf(1, '.');
end
if mod(iter, 10) == 0
fprintf(1, ' %5d\n', iter);
end
%%%% update Lambda
for s = 1:R
Lambda.beta(:, s) = 1 ./ (1 / parameters.beta_lambda + 0.5 * (A.mu(:, s).^2 + diag(A.sigma(:, :, s))));
end
%%%% update A
for s = 1:R
A.sigma(:, :, s) = (diag(Lambda.alpha(:, s) .* Lambda.beta(:, s)) + KKT / sigma_h^2) \ eye(D, D);
A.mu(:, s) = A.sigma(:, :, s) * (K * H.mu(s, :)' / sigma_h^2);
end
%%%% update H
for i = 1:N
indices = ~isnan(Y(i, :));
H.sigma(:, :, i) = (eye(R, R) / sigma_h^2 + W.mu(:, indices) * (W.mu(:, indices)' .* repmat(epsilon.alpha(indices) .* epsilon.beta(indices), 1, R)) + sum(W.sigma(:, :, indices) .* reshape(repmat(epsilon.alpha(indices) .* epsilon.beta(indices), 1, R * R)', [R, R, sum(indices)]), 3)) \ eye(R, R);
H.mu(:, i) = H.sigma(:, :, i) * (A.mu' * K(:, i) / sigma_h^2 + W.mu(:, indices) * (Y(i, indices)' .* epsilon.alpha(indices) .* epsilon.beta(indices)));
end
%%%% update epsilon
for t = 1:T
indices = ~isnan(Y(:, t));
epsilon.beta(t) = 1 / (1 / parameters.beta_epsilon + 0.5 * (Y(indices, t)' * Y(indices, t) - 2 * Y(indices, t)' * H.mu(:, indices)' * W.mu(:, t) + sum(sum((H.mu(:, indices) * H.mu(:, indices)' + sum(H.sigma(:, :, indices), 3)) .* (W.mu(:, t) * W.mu(:, t)' + W.sigma(:, :, t))))));
end
%%%% update W
for t = 1:T
indices = ~isnan(Y(:, t));
W.sigma(:, :, t) = (eye(R, R) / sigma_w^2 + epsilon.alpha(t) * epsilon.beta(t) * (H.mu(:, indices) * H.mu(:, indices)' + sum(H.sigma(:, :, indices), 3))) \ eye(R, R);
W.mu(:, t) = W.sigma(:, :, t) * (epsilon.alpha(t) * epsilon.beta(t) * H.mu(:, indices) * Y(indices, t));
end
end
state.Lambda = Lambda;
state.A = A;
state.epsilon = epsilon;
state.W = W;
state.parameters = parameters;
end