-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_heldout.py
79 lines (61 loc) · 2.14 KB
/
test_heldout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import torch
import yaml
from agent.arguments import get_args_visualizer
from agent.envs import PLEnv
from agent.policy import GNNPolicy
def main(log_name, run_id):
# logger = RunLogger(os.getenv("GRAPHQL_ENDPOINT"))
params = get_load_params(run_id, logger)
path = os.path.join("save", str(run_id) + ".pt")
params["env"]["cursor_start_pos"] = 6
params["env"]["perturbation"] = 0
params["env"]["max_episode_steps"] = 2
params["env"]["assignment_dir"] = "data/tests"
torch.manual_seed(params["seed"])
torch.cuda.manual_seed_all(params["seed"])
if params["cuda"] and torch.cuda.is_available() and params["cuda_deterministic"]:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(1)
device = torch.device("cuda:0" if params["cuda"] else "cpu")
params["num_processes"] = 1
env_kwargs = params["env"]
env = PLEnv.make_vec_envs(
params["seed"], params["num_processes"], device, render=True, **env_kwargs
)
base_kwargs = params["base"]
actor_critic = GNNPolicy(
env.get_attr("orig_obs_space")[0],
env.get_attr("action_space")[0],
env.get_attr("num_actions")[0],
base_kwargs=base_kwargs,
device=device,
done_action = params['env']['done_action'],
)
actor_critic.to(device)
actor_critic.load_state_dict(torch.load(path)[0])
actor_critic.eval()
obs = env.reset()
env.render()
while True:
with torch.no_grad():
(_, action, _, _,) = actor_critic.act(
obs,
None,
None,
)
print(f"Action: {action}")
# breakpoint()
obs, reward, done, info = env.step(action.reshape((-1,)))
if done[0]:
print(f"Reward: {info[0]['episode']['r']}")
print()
if info[0]["episode"]["r"] == 0:
breakpoint()
print("---------------Environment reset---------------")
env.render()
print()
if __name__ == "__main__":
args = get_args_visualizer()
main(args.log_name, args.run_id)