forked from TUI-NICR/ESANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_pretraining.py
executable file
·430 lines (337 loc) · 14.3 KB
/
imagenet_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# -*- coding: utf-8 -*-
"""
.. codeauthor:: Mona Koehler <[email protected]>
.. codeauthor:: Daniel Seichter <[email protected]>
Pretraining of ResNet with exchanged encoder blocks on ImageNet. This script
uses Tensorflow Datasets, as the dataset is already available as tfrecords.
Part of this code is copied from:
https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
import os
import json
import time
import argparse
import torch
import torch.nn as nn
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
import tensorflow_datasets as tfds
from src.models.resnet import ResNet34, ResNet18
from src.logger import CSVLogger
def parse_args():
parser = argparse.ArgumentParser(description='Encoder ImageNet Training')
parser.add_argument('--data_dir',
help='path to ImageNet data')
parser.add_argument('--results_dir',
default='./trained_models/imagenet')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch_size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--weight_decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--encoder', type=str, default='resnet34',
choices=['resnet18', 'resnet34'],
help='Wich resnet to train')
parser.add_argument('-p', '--print-freq', default=1, type=int,
metavar='N', help='print frequency (default: 1)')
parser.add_argument('--finetune', default=False, action='store_true',
help='Set this if you have pretrained weights that '
'only need to be adapted')
parser.add_argument('--weight_file', type=str,
help='path to weight file for finetuning')
args = parser.parse_args()
if args.finetune:
args.lr = 0.001
# default learning rate is for batch_size 256
args.lr = args.lr * args.batch_size / 256
return args
def main():
args = parse_args()
ckpt_dir = os.path.join(args.results_dir, f'{args.encoder}_NBt1D')
os.makedirs(ckpt_dir, exist_ok=True)
with open(os.path.join(ckpt_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, sort_keys=True, indent=4)
model, device = build_model(args)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.weight_file:
if device.type == 'cuda':
checkpoint = torch.load(args.weight_file)
else:
checkpoint = torch.load(args.weight_file,
map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
print("=> loaded checkpoint '{}' (epoch {})"
"".format(args.weight_file, checkpoint['epoch']))
else:
start_epoch = 0
train_batches, validation_batches, dataset_info = get_data(args)
n_train_images = dataset_info.splits['train'].num_examples
n_val_images = dataset_info.splits['validation'].num_examples
log_keys = ['acc_train_top-1', 'acc_train_top-5', 'acc_val_top-1',
'acc_val_top-5']
log_keys_for_csv = log_keys.copy()
log_keys_for_csv.extend(['loss_train', 'loss_val', 'epoch', 'lr'])
csvlogger = CSVLogger(log_keys_for_csv, os.path.join(ckpt_dir, 'logs.csv'),
append=True)
best_acc1 = -1
for epoch in range(start_epoch, args.epochs):
if not args.finetune:
lr = adjust_learning_rate(optimizer, epoch, args)
else:
lr = args.lr
# train for one epoch
logs = train(train_batches, model, criterion, optimizer, epoch, device,
n_train_images, args)
# evaluate on validation set
logs = validate(validation_batches, model, criterion, device,
n_val_images, logs, args)
# remember best acc@1 and save checkpoint
is_best = logs['acc_val_top-1'] > best_acc1
best_acc1 = max(logs['acc_val_top-1'], best_acc1)
save_ckpt(ckpt_dir, model, optimizer, epoch, is_best)
logs['epoch'] = epoch
logs['lr'] = lr
logs.pop('time', None)
csvlogger.write_logs(logs)
print('done')
def get_data(args):
print('Preparing data...')
data, dataset_info = tfds.load(name='imagenet2012',
with_info=True,
as_supervised=True,
download=False,
data_dir=args.data_dir)
train_batches = (data['train']
.shuffle(buffer_size=10000)
.map(preprocess_training_image,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
.batch(args.batch_size)
.prefetch(tf.data.experimental.AUTOTUNE)
)
validation_batches = (data['validation']
.map(preprocess_validation_image,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
.batch(args.batch_size * 3)
.prefetch(tf.data.experimental.AUTOTUNE)
)
return train_batches, validation_batches, dataset_info
def preprocess_training_image(image, label):
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
bbox_begin, bbox_size, bbox = tf.image.sample_distorted_bounding_box(
image_size=tf.shape(image),
bounding_boxes=bbox,
min_object_covered=0.1,
aspect_ratio_range=[3. / 4, 4. / 3],
area_range=[0.08, 1.0],
max_attempts=1,
use_image_if_no_bounding_boxes=True)
image = tf.slice(image, bbox_begin, bbox_size)
image = tf.image.resize(image, (224, 224)) / 255.0
mean = tf.constant([0.485, 0.456, 0.406], dtype=tf.float32)
mean = tf.reshape(mean, [1, 1, 3])
image = image - mean
std = tf.constant([0.229, 0.224, 0.225], dtype=tf.float32)
std = tf.reshape(std, [1, 1, 3])
image = image / std
image = tf.image.random_flip_left_right(image)
image = tf.transpose(image, perm=[2, 0, 1])
return image, label
def preprocess_validation_image(image, label):
image = tf.image.resize(image, (256, 256)) / 255.0
image = tf.image.central_crop(image, central_fraction=224 / 256)
mean = tf.constant([0.485, 0.456, 0.406], dtype=tf.float32)
mean = tf.reshape(mean, [1, 1, 3])
image = image - mean
std = tf.constant([0.229, 0.224, 0.225], dtype=tf.float32)
std = tf.reshape(std, [1, 1, 3])
image = image / std
image = tf.transpose(image, perm=[2, 0, 1])
return image, label
def build_model(args):
class Classifier(nn.Module):
def __init__(self):
super().__init__()
if args.encoder == 'resnet34':
Encoder = ResNet34
elif args.encoder == 'resnet18':
Encoder = ResNet18
self.encoder = Encoder(block='NonBottleneck1D',
pretrained_on_imagenet=False,
activation=nn.ReLU(inplace=True))
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 1000)
def forward(self, images):
encoder_outs = self.encoder(images)
enc_down_32, enc_down_16, enc_down_8, enc_down_4 = encoder_outs
out = self.avgpool(enc_down_32)
out = torch.flatten(out, 1)
out = self.fc(out)
return out
model = Classifier()
print(model)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Device:', device)
model.to(device)
return model, device
def train(train_batches, model, criterion, optimizer, epoch, device,
n_train_images, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
n_train_images,
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, train_batch in enumerate(train_batches):
images = torch.from_numpy(train_batch[0].numpy())
target = torch.from_numpy(train_batch[1].numpy())
# do not train on the last smaller batch
current_batch_size = len(target)
if current_batch_size < args.batch_size:
break
# measure data loading time
data_time.update(time.time() - end)
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display((i+1)*args.batch_size)
logs = dict()
logs['acc_train_top-1'] = top1.avg.cpu().numpy().item()
logs['acc_train_top-5'] = top5.avg.cpu().numpy().item()
logs['loss_train'] = losses.avg
return logs
def validate(validation_batches, model, criterion, device, n_val_images, logs,
args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
n_val_images,
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
examples_done = 0
for i, validation_batch in enumerate(validation_batches):
images = torch.from_numpy(validation_batch[0].numpy())
target = torch.from_numpy(validation_batch[1].numpy())
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
examples_done += len(target)
if i % args.print_freq == 0:
progress.display(examples_done)
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5), flush=True)
logs['acc_val_top-1'] = top1.avg.cpu().numpy().item()
logs['acc_val_top-5'] = top5.avg.cpu().numpy().item()
logs['loss_val'] = losses.avg
return logs
class AverageMeter(object):
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries), flush=True)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_ckpt(ckpt_dir, model, optimizer, epoch, is_best=False):
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
# save best checkpoint with epoch number
if is_best:
ckpt_model_filename = "ckpt_epoch_{}.pth".format(epoch)
path = os.path.join(ckpt_dir, ckpt_model_filename)
torch.save(state, path)
print('{:>2} has been successfully saved'.format(path), flush=True)
# always save latest checkpoint
torch.save(state, os.path.join(ckpt_dir, 'ckpt_latest.pth'))
if __name__ == '__main__':
main()