-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserver.R
executable file
·141 lines (123 loc) · 5.07 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
source("global.R")
credentials <- list("test" = "098f6bcd4621d373cade4e832627b4f6")
ZOOM_LEVEL <- 3
shinyServer(function(input, output, session) {
source('ui.R') #login page
USER <- reactiveValues(Logged = FALSE)
INIT <- FALSE
observeEvent(input$.login, {
error <- FALSE
user <- input$.username
pwd <- input$.password
if(user == "" | pwd == ""){
error <- TRUE
}
if(!error){
if (!is.null(credentials[[user]]) && credentials[[user]] == pwd){
USER$Logged <- TRUE
} else {
error <- TRUE
}
}
if(error){
show("message")
output$message = renderText("Invalid user name or password")
delay(5000, hide("message", anim = TRUE, animType = "fade"))
}
})
# Output the main content panel
output$content = renderUI(
ifelse(USER$Logged, uiNormal(), uiLogin())
)
# reactive expression for data
data <- reactive({
range_m <- input$life_exp_m
range_f <- input$life_exp_f
df_filtered <- df %>% filter(male >= range_m[1]) %>% filter(male <= range_m[2]) %>% filter(female >= range_f[1]) %>% filter(female <= range_f[2])
return(df_filtered)
})
# map with locations of facilities
output$map <- renderLeaflet({
df <- data()
if(nrow(df) > 0){
leaflet() %>%
addTiles() %>%
setView(lng = df[1,]$lon, lat = df[1,]$lat, zoom = ZOOM_LEVEL) %>%
addMarkers(data = df, lat = ~lat, lng = ~lon) %>%
addCircles(data = df[1,], lng = ~lon, lat = ~lat, weight = 1, radius = ~(input$distance * 1000))
}
})
# print content of data
output$df_contents <- DT::renderDataTable(rownames = FALSE, extensions = 'Buttons',{
df
}, options = list(pageLength = 50,
paging = TRUE,
dom = 'Blfrtip',
buttons = list('csv', 'print', 'pdf',
list(extend = 'excel', exportOptions = list(columns = ':visible')),
list(extend = 'colvis', text='Show/Hide Columns', collectionLayout='fixed two-column')
)
)
)
# plotly content
output$plot <- renderPlotly({
df <- data()
m <- list(l = 150, r = 0, b = 150, t = 50, pad = 4)
plot_ly(df, y = ~country, x = ~male, type = 'bar', name = 'Male') %>%
add_trace(x = ~female, name = 'Female') %>%
layout(title = "Life expectancy per country", yaxis = list(title = ''), xaxis = list(title = 'Age (years)'), barmode = 'group', margin = m)
})
observeEvent(input$showDataTab, {
if(!INIT){
show(selector = "a[data-value=DataTable]")
INIT <<- TRUE
} else{
# switch tab if currently on data tab
if (input$main == "DataTable"){
updateTabsetPanel(session, inputId = 'main', selected = 'Leaflet')
}
toggle(selector = "a[data-value=DataTable]")
}
})
# update the map markers and view on location selectInput changes
observeEvent(c(input$location, input$distance), {
proxy <- leafletProxy("map")
if (nrow(df) > 0){
# Add markers for chosen facility and the ones within chosen distance x
df <- data()
df_circle <- df[df$country == input$location,]
proxy %>% clearShapes() %>% clearPopups() %>%
addCircles(data = df_circle, lng = ~lon, lat = ~lat, weight = 1, radius = ~(input$distance * 1000)) %>%
setView(lng = df_circle[1,'lon'], lat = df_circle[1,'lat'], zoom = ZOOM_LEVEL) # update the center of the map with the location of the selected facility (use current zoom level)
}
})
# When map is clicked, show a popup with info
observeEvent(input$map_marker_click, {
event <- input$map_marker_click
loc <- df[df$lat == as.numeric(event$lat) & df$lon == as.numeric(event$lng),]
content <- paste("Country:", loc$country, "<br>", "Male:", loc$male, "<br>", "Female:", loc$female)
leafletProxy("map") %>% clearPopups() %>% addPopups(event$lng, event$lat, content, layerId = event$id)
})
# when sliders are changed, update dropdown
observeEvent(c(input$life_exp_f, input$life_exp_m), {
updateSelectInput(session, "location", choices = data()$country)
})
# Reactive timer
autoInvalidate <- reactiveTimer(3000)
# Generate a new histogram each time the timer fires
output$contPlot <- renderPlot({
autoInvalidate()
hist(rnorm(10), xlab = "Value", main = "Histogram of a random normal distribution with 10 observations")
})
observeEvent(input$playSound, {
disable("playSound")
js$playMusic()
})
observeEvent(input$stopSound, {
enable("playSound")
js$stopMusic()
})
observeEvent(input$showProgress, {
Sys.sleep(5)
})
})