-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtiny.py
104 lines (85 loc) · 3.14 KB
/
tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
from PIL import Image
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch.optim import LBFGS
import torchvision
from torchvision import transforms
from torch.backends import cudnn
cudnn.benchmark = True
style_img = 'wave.png'
content_img = 'brad_pitt.png'
def gram(input):
b,c,h,w = input.size()
F = input.view(b, c, h*w)
G = torch.bmm(F, F.transpose(1,2))
G.div_(h*w)
return G
style_layers = [2, 7, 12, 19]
content_layers = [19]
style_weights = [1e0 for n in [64,128,256,512]]
content_weights = [1e0]
def vgg(inputs, model):
'''VGG definition with style and content outputs.
'''
style, content = [], []
def block(x, ids):
for i in ids:
x = F.relu(F.conv2d(x, Variable(model.features[i].weight.data.cuda()),Variable(model.features[i].bias.data.cuda()), 1, 1), inplace=True)
if i in style_layers:
style.append(gram(x))
if i in content_layers:
content.append(x)
return F.max_pool2d(x, 2, 2)
o = block(inputs, [0, 2])
o = block(o, [5, 7])
o = block(o, [10, 12, 14])
o = block(o, [17, 19, 21])
o = block(o, [24, 26, 28])
return style, content
img_size = 512
tr_mean, tr_std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
prep = transforms.Compose([transforms.Scale(img_size),
transforms.ToTensor(),
transforms.Normalize(tr_mean, tr_std),
])
def postp(tensor): # to clip results in the range [0,1]
mu = torch.Tensor(tr_mean).view(-1,1,1).expand_as(tensor)
sigma = torch.Tensor(tr_std).view(-1,1,1).expand_as(tensor)
img = (tensor * sigma + mu).clamp(0, 1)
return img
#load pretrained vgg16 model
model = torchvision.models.vgg16(pretrained=True)
def load_img(path):
return Image.open(path)
imgs = [load_img(style_img), load_img(content_img)]
imgs_torch = [Variable(prep(img).unsqueeze(0).cuda()) for img in imgs]
style_image, content_image = imgs_torch
style_targets = vgg(style_image, model)[0]
content_targets = vgg(content_image, model)[1]
#run style transfer
max_iter = 500
show_iter = 50
opt_img = Variable(content_image.data.clone(), requires_grad=True)
optimizer = LBFGS([opt_img]);
n_iter=[0]
def l1_loss(x, y):
return torch.abs(x - y).mean()
while n_iter[0] <= max_iter:
def closure():
optimizer.zero_grad()
style, content = vgg(opt_img, model)
style_loss = sum(alpha * l1_loss(u, v)
for alpha, u, v in zip(style_weights, style, style_targets))
content_loss = sum(beta * l1_loss(u, v)
for beta, u, v in zip(content_weights, content, content_targets))
loss = style_loss + content_loss
loss.backward()
n_iter[0]+=1
if n_iter[0]%show_iter == (show_iter-1):
print('Iteration: %d, style loss: %f, content loss: %f'%(n_iter[0]+1,style_loss.data[0], content_loss.data[0]))
out_img = postp(opt_img.data[0].cpu().squeeze())
torchvision.utils.save_image(out_img,'out_%d.png'%(n_iter[0]+1))
return loss
optimizer.step(closure)