forked from Kyubyong/tacotron
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
94 lines (77 loc) · 3.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
https://www.github.com/kyubyong/tacotron
'''
from __future__ import print_function
import tensorflow as tf
import numpy as np
import librosa
import os
from tqdm import tqdm
from hyperparams import Hyperparams as hp
from prepro import *
from networks import encode, decode1, decode2
from modules import *
from data_load import get_batch
from utils import shift_by_one
from prepro import load_vocab
class Graph:
def __init__(self, is_training=True):
self.graph = tf.Graph()
with self.graph.as_default():
if is_training:
self.x, self.y, self.z, self.num_batch = get_batch()
self.decoder_inputs = shift_by_one(self.y)
else: # Evaluation
self.x = tf.placeholder(tf.int32, shape=(None, None))
self.decoder_inputs = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels*hp.r))
# Encoder
self.memory = encode(self.x, is_training=is_training) # (N, T, E)
# Decoder
self.outputs1 = decode1(self.decoder_inputs, self.memory, is_training=is_training) # (N, T', hp.n_mels*hp.r)
self.outputs2 = decode2(self.outputs1, is_training=is_training) # (N, T', (1+hp.n_fft//2)*hp.r)
if is_training:
# Loss
if hp.loss_type=="l1": # L1 loss
self.loss1 = tf.abs(self.outputs1 - self.y)
self.loss2 = tf.abs(self.outputs2 - self.z)
else: # L2 loss
self.loss1 = tf.squared_difference(self.outputs1, self.y)
self.loss2 = tf.squared_difference(self.outputs2, self.z)
# Target masking
if hp.target_zeros_masking:
self.loss1 *= tf.to_float(tf.not_equal(self.y, 0.))
self.loss2 *= tf.to_float(tf.not_equal(self.z, 0.))
self.mean_loss1 = tf.reduce_mean(self.loss1)
self.mean_loss2 = tf.reduce_mean(self.loss2)
self.mean_loss = self.mean_loss1 + self.mean_loss2
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer(learning_rate=hp.lr)
self.train_op = self.optimizer.minimize(self.mean_loss, global_step=self.global_step)
# Summmary
tf.summary.scalar('mean_loss1', self.mean_loss1)
tf.summary.scalar('mean_loss2', self.mean_loss2)
tf.summary.scalar('mean_loss', self.mean_loss)
self.merged = tf.summary.merge_all()
def main():
g = Graph(); print("Training Graph loaded")
with g.graph.as_default():
# Load vocabulary
char2idx, idx2char = load_vocab()
# Training
sv = tf.train.Supervisor(logdir=hp.logdir,
save_model_secs=0)
with sv.managed_session() as sess:
for epoch in range(1, hp.num_epochs+1):
if sv.should_stop(): break
for step in tqdm(range(g.num_batch), total=g.num_batch, ncols=70, leave=False, unit='b'):
sess.run(g.train_op)
# Write checkpoint files at every epoch
gs = sess.run(g.global_step)
sv.saver.save(sess, hp.logdir + '/model_epoch_%02d_gs_%d' % (epoch, gs))
if __name__ == '__main__':
main()
print("Done")