-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_utils.py
228 lines (166 loc) · 6.02 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
"""
import torch
import numpy as np
def to_torch(x, dtype=torch.float, device='cuda:0', requires_grad=False):
return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad)
@torch.jit.script
def quat_mul(a, b):
assert a.shape == b.shape
shape = a.shape
a = a.reshape(-1, 4)
b = b.reshape(-1, 4)
x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3]
x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3]
ww = (z1 + x1) * (x2 + y2)
yy = (w1 - y1) * (w2 + z2)
zz = (w1 + y1) * (w2 - z2)
xx = ww + yy + zz
qq = 0.5 * (xx + (z1 - x1) * (x2 - y2))
w = qq - ww + (z1 - y1) * (y2 - z2)
x = qq - xx + (x1 + w1) * (x2 + w2)
y = qq - yy + (w1 - x1) * (y2 + z2)
z = qq - zz + (z1 + y1) * (w2 - x2)
quat = torch.stack([x, y, z, w], dim=-1).view(shape)
return quat
@torch.jit.script
def normalize(x, eps: float = 1e-9):
return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1)
@torch.jit.script
def quat_apply(a, b):
shape = b.shape
a = a.reshape(-1, 4)
b = b.reshape(-1, 3)
xyz = a[:, :3]
t = xyz.cross(b, dim=-1) * 2
return (b + a[:, 3:] * t + xyz.cross(t, dim=-1)).view(shape)
@torch.jit.script
def quat_rotate(q, v):
shape = q.shape
q_w = q[:, -1]
q_vec = q[:, :3]
a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1)
b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0
c = q_vec * \
torch.bmm(q_vec.view(shape[0], 1, 3), v.view(
shape[0], 3, 1)).squeeze(-1) * 2.0
return a + b + c
@torch.jit.script
def quat_rotate_inverse(q, v):
shape = q.shape
q_w = q[:, -1]
q_vec = q[:, :3]
a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1)
b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0
c = q_vec * \
torch.bmm(q_vec.view(shape[0], 1, 3), v.view(
shape[0], 3, 1)).squeeze(-1) * 2.0
return a - b + c
@torch.jit.script
def quat_conjugate(a):
shape = a.shape
a = a.reshape(-1, 4)
return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape)
@torch.jit.script
def quat_unit(a):
return normalize(a)
@torch.jit.script
def quat_from_angle_axis(angle, axis):
theta = (angle / 2).unsqueeze(-1)
xyz = normalize(axis) * theta.sin()
w = theta.cos()
return quat_unit(torch.cat([xyz, w], dim=-1))
@torch.jit.script
def normalize_angle(x):
return torch.atan2(torch.sin(x), torch.cos(x))
@torch.jit.script
def tf_inverse(q, t):
q_inv = quat_conjugate(q)
return q_inv, -quat_apply(q_inv, t)
@torch.jit.script
def tf_apply(q, t, v):
return quat_apply(q, v) + t
@torch.jit.script
def tf_vector(q, v):
return quat_apply(q, v)
@torch.jit.script
def tf_combine(q1, t1, q2, t2):
return quat_mul(q1, q2), quat_apply(q1, t2) + t1
@torch.jit.script
def get_basis_vector(q, v):
return quat_rotate(q, v)
def get_axis_params(value, axis_idx, x_value=0., dtype=np.float64, n_dims=3):
"""construct arguments to `Vec` according to axis index.
"""
zs = np.zeros((n_dims,))
assert axis_idx < n_dims, "the axis dim should be within the vector dimensions"
zs[axis_idx] = 1.
params = np.where(zs == 1., value, zs)
params[0] = x_value
return list(params.astype(dtype))
@torch.jit.script
def copysign(a, b):
# type: (float, Tensor) -> Tensor
a = torch.tensor(a, device=b.device, dtype=torch.float).repeat(b.shape[0])
return torch.abs(a) * torch.sign(b)
@torch.jit.script
def get_euler_xyz(q):
qx, qy, qz, qw = 0, 1, 2, 3
# roll (x-axis rotation)
sinr_cosp = 2.0 * (q[:, qw] * q[:, qx] + q[:, qy] * q[:, qz])
cosr_cosp = q[:, qw] * q[:, qw] - q[:, qx] * \
q[:, qx] - q[:, qy] * q[:, qy] + q[:, qz] * q[:, qz]
roll = torch.atan2(sinr_cosp, cosr_cosp)
# pitch (y-axis rotation)
sinp = 2.0 * (q[:, qw] * q[:, qy] - q[:, qz] * q[:, qx])
pitch = torch.where(torch.abs(sinp) >= 1, copysign(
np.pi / 2.0, sinp), torch.asin(sinp))
# yaw (z-axis rotation)
siny_cosp = 2.0 * (q[:, qw] * q[:, qz] + q[:, qx] * q[:, qy])
cosy_cosp = q[:, qw] * q[:, qw] + q[:, qx] * \
q[:, qx] - q[:, qy] * q[:, qy] - q[:, qz] * q[:, qz]
yaw = torch.atan2(siny_cosp, cosy_cosp)
return roll % (2*np.pi), pitch % (2*np.pi), yaw % (2*np.pi)
@torch.jit.script
def quat_from_euler_xyz(roll, pitch, yaw):
cy = torch.cos(yaw * 0.5)
sy = torch.sin(yaw * 0.5)
cr = torch.cos(roll * 0.5)
sr = torch.sin(roll * 0.5)
cp = torch.cos(pitch * 0.5)
sp = torch.sin(pitch * 0.5)
qw = cy * cr * cp + sy * sr * sp
qx = cy * sr * cp - sy * cr * sp
qy = cy * cr * sp + sy * sr * cp
qz = sy * cr * cp - cy * sr * sp
return torch.stack([qx, qy, qz, qw], dim=-1)
def quat_from_euler(euler):
# xyz
roll, pitch, yaw = euler[..., 0], euler[..., 1], euler[..., 2]
return quat_from_euler_xyz(roll, pitch, yaw)
@torch.jit.script
def torch_rand_float(lower, upper, shape, device):
# type: (float, float, Tuple[int, int], str) -> Tensor
return (upper - lower) * torch.rand(*shape, device=device) + lower
@torch.jit.script
def torch_random_dir_2(shape, device):
# type: (Tuple[int, int], str) -> Tensor
angle = torch_rand_float(-np.pi, np.pi, shape, device).squeeze(-1)
return torch.stack([torch.cos(angle), torch.sin(angle)], dim=-1)
@torch.jit.script
def tensor_clamp(t, min_t, max_t):
return torch.max(torch.min(t, max_t), min_t)
@torch.jit.script
def scale(x, lower, upper):
return (0.5 * (x + 1.0) * (upper - lower) + lower)
@torch.jit.script
def unscale(x, lower, upper):
return (2.0 * x - upper - lower) / (upper - lower)
def unscale_np(x, lower, upper):
return (2.0 * x - upper - lower) / (upper - lower)