Skip to content

Latest commit

 

History

History
102 lines (74 loc) · 3.29 KB

File metadata and controls

102 lines (74 loc) · 3.29 KB

Lidar Panoptic Segmentation in an Open World

Gif

This repo provides supporting code for the paper:

Lidar Panoptic Segmentation in an Open World. IJCV 2024. Anirudh S Chakravarthy, Meghana Reddy Ganesina, Peiyun Hu, Laura Leal-Taixé, Shu Kong, Deva Ramanan, and Aljosa Osep.

This code builds on the PyTorch implementation of 4D-PLS. Below, we provide instructions to train and evaluate our method, OWL. fig

Step 1: Open-set recognition using 4D-PLS

Training

Usage:

python scripts/train_TS1.sh

Evaluation

Usage:

sh scripts/test.sh -t 1 -p 4DPLS_TS1 -e "EXPERIMENT_NAME"

One can also optionally specify GPU ID using the -g flag.

Extended Confusion Matrix

To generate confusion and extended confusion matrix, run the following command:

python evaluate_conf_matrix.py -t 0 -p ../project_data/ramanan/achakrav/4D-PLS/results/4DPLS_TS0

Visualization

First, go to the semantic-kitti-api repo.

Then, generate per-frame visualizations using the following command:

python visualize.py -d ../data/SemanticKitti/ -t 1 -c ../data/SemanticKitti/semantic-kitti.yaml -s 08 -p ../results/predictions/TS1 -di --visu 1 -sd ../results/visualizations/trk_valid_vis/TS1

Then, go to the directory where png files are saved.

cd ../results/visualizations/trk_valid_vis/TS1/1_pred_TS1

Finally, run the following command:

ffmpeg -r 10 -i %d.png -vf scale=1620:1080 -vframes 500 ../1_pred_TS1.mp4

NOTE: For ffmpeg commands, refer to this link.

Step 2: Evaluation on KITTI-360

Metric evaluation

Run evaluation on a given task set using the following command:

sh scripts/test_kitti360.sh -t 1 -p 4DPLS_TS1 -e "EXPERIMENT_NAME"

If you wish to evaluate on multiple sequences (currently fixed to sequence 2), change L142 to the appropriate sequence.

Visualization

First, go to the semantic-kitti-api repo.

Then, generate per-frame visualizations using the following command:

python visualize_kitti360.py -d ../data/Kitti360/ -t 1 -c ../data/Kitti360/kitti-360.yaml -s 02 -p ../results/predictions/Kitti360/TS1 -di --visu 1 -sd ../results/visualizations/trk_valid_vis/Kitti360/TS1

Then, go to the directory where png files are saved.

cd ../results/visualizations/trk_valid_vis/Kitti360/TS1/1_pred_TS1/

Finally, run the following command:

ffmpeg -r 10 -i %d.png -vf scale=1620:1080 -vframes 500 ../1_pred_TS1.mp4

Citation

If you find our code useful, please consider citing our paper:

@article{chakravarthy2024lidar,
  title={Lidar Panoptic Segmentation in an Open World},
  author={Chakravarthy, Anirudh S and Ganesina, Meghana Reddy and Hu, Peiyun and Leal-Taix{\'e}, Laura and Kong, Shu and Ramanan, Deva and Osep, Aljosa},
  journal={International Journal of Computer Vision},
  pages={1--22},
  year={2024},
  publisher={Springer}
}