-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinterpol.c
226 lines (205 loc) · 5.71 KB
/
interpol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
* interpol.c -- Produce the coefficients of an interpolation polynomial.
* 08-05-03
*
* Takes as input a set of N points x_k and corresponding function values f_k
* such that f(x_k) = f_k. Produces the exact coefficients of the unique
* (N-1)th degree interpolation polynomial which passes through the supplied
* points.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <ctype.h>
#include <float.h>
#include "weecrypt.h"
char *strtompq(const char *str, mpq_t n);
/*
* Given a set of N distinct points x_i for i = 1 .. N and a corresponding
* set of values f_i, construct a polynomial p(x) of degree at most N-1 such
* that p(x_i) = f_i for i = 1 .. N
*
* Method (Newton's Interpolatory Divided Difference Formula):
* The polynomial p(x) can be expressed as
* p(x) = f[x_1] + f[x_1,x_2](x-x_1) + f[x_1,x_2,x_3](x-x_1)(x-x_2) + ...
* + f[x_1,x_2,...,xN](x-x_1)(x-x_2)...(x-x_{N-1})
*
* where f[x_i,...,x_{i+k}] is the divided difference coefficient defined by:
* f[x_{i+1},...,x_{i+k}] - f[x_i,...,x_{i+k-1}]
* f[x_i,...,x_{i+k}] = ---------------------------------------------
* x_{i+k} - x_i
* and f[x_i] = f_i
*/
int
main(int argc, char **argv)
{
/* Read command line arguments. For example, to find the coefficients of
* the 2nd degree polynomial for p(0) = 1, p(1) = 2, p(2) = 3, use
* ./interpol 0:1 1:2 2:3, etc. */
if (argc <= 1) {
fprintf(stderr, "usage: interpol x_1:f_1 x_2:f_2 ... x_N:f_N\n");
exit(1);
}
const int n = argc - 1;
mpq_t *x = MALLOC(sizeof(*x) * n);
mpq_t *f = MALLOC(sizeof(*f) * n);
for (int j = 0; j < n; j++) {
mpq_init(x[j]);
char *p = strtompq(argv[j+1], x[j]);
if (*p != ':') {
fprintf(stderr, "interpol: bad input format\n");
exit(1);
}
for (int i = 0; i < j; i++)
if (mpq_cmp_eq(x[i], x[j])) {
fprintf(stderr, "interpol: cannot have duplicate x values\n");
fprintf(stderr, "x[%d]=", i); mpq_print_dec(x[i]);
fprintf(stderr, "\n");
fprintf(stderr, "x[%d]=", j); mpq_print_dec(x[j]);
fprintf(stderr, "\n");
exit(1);
}
mpq_init(f[j]);
p = strtompq(p+1, f[j]);
if (*p != '\0') {
fprintf(stderr, "interpol: bad input format\n");
exit(1);
}
printf("f[");
mpq_print_dec(x[j]);
printf("]=");
mpq_print_dec(f[j]);
printf("\n");
}
/* Allocate and initialize coefficient table. */
mpq_t **ff = MALLOC(sizeof(*ff) * n);
for (int i = 0; i < n; i++) {
ff[i] = MALLOC(sizeof(**ff) * (i+1));
mpq_init_mpq(ff[i][0], f[i]);
for (int j = 1; j <= i; j++)
mpq_init(ff[i][j]);
}
/* Compute the coefficients by the divided difference formula:
*
* for i <- 1 to n do
* f[i,0] <- f_i
* for i <- 1 to n-1 do
* for j <- 1 to i do
* f[i,j] <- (f[i,j-1] - f[i-1][j-1]) / (x[i] - x[i-j])
* Then the f[i,i] entries are the coefficients for the forward-difference
* formula. */
mpq_t t;
mpq_init(t);
for (int i = 1; i < n; i++) {
for (int j = 1; j <= i; j++) {
mpq_sub(ff[i][j-1], ff[i-1][j-1], ff[i][j]);
mpq_sub(x[i], x[i-j], t);
mpq_div(ff[i][j], t, ff[i][j]);
}
}
mpq_free(t);
/* Compute the polynomials p_k=\prod_{i=0}^{k-1}(x-x_i) for i = 0 ... n-1 */
mpq_poly_t tp, pp0, pp1, mp, pp;
mpq_poly_init(tp);
mpq_poly_init(pp0);
mpq_poly_init(pp1);
mpq_poly_init(mp);
mpq_poly_init(pp);
/* pp <- f(x_0) */
mpq_set_mpq(pp->c[0], ff[0][0]);
/* tp <- (x-?) */
mpq_poly_set_degree(tp, 1);
mpq_set_u32(tp->c[1], 1);
/* pp0 <- 1 */
mpq_set_u32(pp0->c[0], 1);
for (int i = 1; i < n; i++) {
/* tp <- (1-x[i-1]) */
mpq_set_mpq(tp->c[0], x[i-1]);
mpq_neg(tp->c[0]);
mpq_poly_mul(pp0, tp, pp1);
mpq_poly_set(pp1, mp);
mpq_poly_mulq(mp, ff[i][i]);
mpq_poly_add(pp, mp, pp);
mpq_poly_swap(pp0, pp1);
}
/* Now output it. */
#if 0
printf("Points interpolated by degree-%d polynomial\n", pp->deg);
printf("p(x)=c0+c1*x+c2*x^2+...+cn*x^n where:\n");
int places = (pp->deg >= 1000) ? 4 :
(pp->deg >= 100) ? 3 :
(pp->deg >= 10) ? 2 : 1;
for (j = pp->deg; j >= 0; j--) {
printf("c%*d=", places, j);
mpq_print_dec(pp->c[j]);
printf(" (%.*g)", DBL_DIG+1, mpq_get_d(pp->c[j]));
printf("\n");
}
printf("\n");
#endif
mpq_poly_print(pp, 'x', "Points interpolated by degree-%d polynomial P(x)=",
pp->deg);
printf("\n");
/* Evaluate it at supplied points. */
mpq_init(t);
for (int i = 0; i < n; i++) {
mpq_poly_eval(pp, x[i], t);
printf("p(%.*g)=", DBL_DIG+1, mpq_get_d(x[i])); mpq_print_dec(t);
printf("=%.*g", DBL_DIG+1, mpq_get_d(t));
if (mpq_cmp(t, f[i]))
printf(" [doesnt match with value=%.*g]",
DBL_DIG+1, mpq_get_d(f[i]));
printf("\n");
}
mpq_free(t);
/* Clean up all our shite. */
mpq_poly_free(tp);
mpq_poly_free(pp0);
mpq_poly_free(pp1);
mpq_poly_free(mp);
mpq_poly_free(pp);
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++)
mpq_free(ff[i][j]);
FREE(ff[i]);
}
FREE(ff);
for (int j = 0; j < n; j++) {
mpq_free(x[j]);
mpq_free(f[j]);
}
FREE(x);
FREE(f);
return 0;
}
char *
strtompq(const char *str, mpq_t n)
{
int neg = 0;
while (*str && isspace(*str))
str++;
if (*str == '-') {
neg = 1;
str++;
} else if (*str == '+') {
str++;
}
mpq_set_u32(n, 0);
while (*str && isdigit(*str)) {
mpi_mul_u32(n->num, 10, n->num);
mpi_add_u32(n->num, *str++ - '0', n->num);
}
if (*str == '.') {
str++;
while (*str && isdigit(*str)) {
mpi_mul_u32(n->num, 10, n->num);
mpi_add_u32(n->num, *str++ - '0', n->num);
mpi_mul_u32(n->den, 10, n->den);
}
}
if (neg)
mpq_neg(n);
mpq_normalize(n);
return (char *)str;
}