-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathReconstruct.py
executable file
·259 lines (193 loc) · 8.79 KB
/
Reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# ======================================================================
import pangloss
import sys,getopt,cPickle,numpy
# ======================================================================
def Reconstruct(argv):
"""
NAME
Reconstruct.py
PURPOSE
Read in a lightcone (or list of lightcones) and compute all
quantities needed to estimate kappah, the convergence due to
halos, at the centre of the lightcone. Output is a list of sample
kappah values drawn from Pr(kappah|D), where D refers to either
observed data, or simulated data from a calibration line of
sight.
COMMENTS
The config file contains the list of lightcones to be
reconstructed, in the form of either a directory or a single
instance. If a directory is specified, one also gives a number
("batchsize") of lightcones to be reconstructed at a time.
The number of kappah samples desired must also be given in the
config file.
FLAGS
-h Print this message [0]
INPUTS
configfile Plain text file containing Pangloss configuration
OUTPUTS
stdout Useful information
samples Catalog(s) of samples from Pr(kappah|D)
EXAMPLE
Reconstruct.py example.config
BUGS
- Code is incomplete.
AUTHORS
This file is part of the Pangloss project, distributed under the
GPL v2, by Tom Collett (IoA) and Phil Marshall (Oxford).
Please cite: Collett et al 2013, http://arxiv.org/abs/1303.6564
HISTORY
2013-03-21 started Collett & Marshall (Oxford)
"""
# --------------------------------------------------------------------
try:
opts, args = getopt.getopt(argv,"h",["help"])
except getopt.GetoptError, err:
print str(err) # will print something like "option -a not recognized"
print Reconstruct.__doc__ # will print the big comment above.
return
for o,a in opts:
if o in ("-h", "--help"):
print Reconstruct.__doc__
return
else:
assert False, "unhandled option"
# Check for setup file in array args:
if len(args) == 1:
configfile = args[0]
print pangloss.doubledashedline
print pangloss.hello
print pangloss.doubledashedline
print "Reconstruct: assigning halo mass to various lightcones"
print "Reconstruct: taking instructions from",configfile
else:
print Reconstruct.__doc__
return
# --------------------------------------------------------------------
# Read in configuration, and extract the ones we need:
experiment = pangloss.Configuration(configfile)
# Get the experiment name from the configfile name instead?
EXP_NAME = experiment.parameters['ExperimentName']
zd = experiment.parameters['StrongLensRedshift']
zs = experiment.parameters['SourceRedshift']
calpickles = []
Nc = experiment.parameters['NCalibrationLightcones']
for i in range(Nc):
calpickles.append(experiment.getLightconePickleName('simulated',pointing=i))
obspickle = experiment.getLightconePickleName('real')
# Ray tracing:
RTscheme = experiment.parameters['RayTracingScheme']
# SHM relation parameters:
SHMrelation = experiment.parameters['StellarMass2HaloMassRelation']
CALIB_DIR = experiment.parameters['CalibrationFolder'][0]
SHMfile = CALIB_DIR+'/'+SHMrelation+'.pickle'
# Halo mass function data:
HMFfile = experiment.parameters['HMFfile'][0]
# Photo-zs:
zperr = experiment.parameters['PhotozError']
# Stellar mass observations:
MserrP = experiment.parameters['PhotometricMstarError']
MserrS = experiment.parameters['SpectroscopicMstarError']
# Sampling Pr(kappah|D):
Ns = experiment.parameters['NRealisations']
# Reconstruct calibration lines of sight?
DoCal = experiment.parameters['ReconstructCalibrations']
# --------------------------------------------------------------------
# Load in stellar mass to halo relation, or make a new one:
try:
shmr = pangloss.readPickle('dummy')#SHMfile)
except IOError:
print "Reconstruct: generating the stellar mass to halo mass grid."
print "Reconstruct: this may take a moment..."
shmr = pangloss.SHMR(method=SHMrelation)
shmr.makeHaloMassFunction(HMFfile)
shmr.makeCDFs()
pangloss.writePickle(shmr,SHMfile)
print "Reconstruct: SHMR saved to "+SHMfile
# --------------------------------------------------------------------
# Make redshift grid:
grid = pangloss.Grid(zd,zs,nplanes=100)
# --------------------------------------------------------------------
# Read in lightcones from pickles:
calcones = []
for i in range(Nc):
calcones.append(pangloss.readPickle(calpickles[i]))
obscone = pangloss.readPickle(obspickle)
if DoCal=="False": #must be string type
calcones=[]
calpickles=[]
allcones = calcones+[obscone]
allconefiles = calpickles+[obspickle]
# --------------------------------------------------------------------
# Make realisations of each lightcone, and store sample kappah vals:
for i in range(len(allcones)):
print pangloss.dashedline
print "Reconstruct: drawing %i samples from Pr(kappah|D)" % (Ns)
print "Reconstruct: given data in "+allconefiles[i]
# Get lightcone, and start PDF for its kappa_halo:
lc = allcones[i]
p = pangloss.PDF('kappa_halo')
# coming soon: gamma1, gamma2...
# Redshift scaffolding:
lc.defineSystem(zd,zs)
lc.loadGrid(grid)
# Figure out data quality etc:
lc.configureForSurvey(experiment)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Draw Ns sample realisations of this lightcone, and hence
# accumulate samples from Pr(kappah|D):
for j in range(Ns):
if j % 20 == 0 and j !=0:
print ("Reconstruct: ...on sample %i out of %i..." % (j,Ns))
# Draw z from z_obs:
lc.mimicPhotozError(sigma=zperr)
lc.snapToGrid(grid)
# Simulated lightcones need mock observed Mstar_obs values
# drawing from their Mhalos:
if lc.flavor == 'simulated': lc.drawMstars(shmr)
# Draw Mstar from Mstar_obs:
lc.mimicMstarError(sigmaP=MserrP,sigmaS=MserrS)
# Draw Mhalo from Mstar, and then c from Mhalo:
lc.drawMhalos(shmr)
lc.drawConcentrations(errors=True)
# Compute each halo's contribution to the convergence:
lc.makeKappas(truncationscale=10)
k_add=lc.combineKappas()
if RTscheme == 'sum':
p.append([lc.kappa_add_total])
# coming soon: lc.gamma1_add_total, lc.gamma2_add_total
elif RTscheme == 'keeton':
p.append([lc.kappa_keeton])
else:
raise "Unknown ray-tracing scheme: "+RTscheme
# Make a nice visualisation of one of the realisations, in
# two example cases:
if j ==0 and (lc.flavor == 'real' or i == 0):
x = allconefiles[i]
pngfile = x.split('.')[0]+".png"
lc.plot(output=pngfile)
print "Reconstruct: saved visualisation of lightcone in "+pngfile
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Take Hilbert ray-traced kappa for this lightcone as "truth":
p.truth[0] = lc.kappa_hilbert
# Pickle this lightcone's PDF:
x = allconefiles[i]
pfile = x.split('.')[0].split("_lightcone")[0]+"_"+EXP_NAME+"_PofKappah.pickle"
pangloss.writePickle(p,pfile)
print "Reconstruct: Pr(kappah|D) saved to "+pfile
# To save loading in time in Calibrate.py we compute the median
# of kappah and save it in a separate file, with kappaHilbert
if lc.flavor=="simulated":
pfile2 = x.split('.')[0].split("_lightcone")[0]+"_"+EXP_NAME+"_KappaHilbert_Kappah_median.pickle"
pangloss.writePickle([p.truth[0],[numpy.median(p.samples)]],pfile2)
# BUG: shouldn't Pr(kappa,<kappah>) be pickled as a PDF?
# BUG: and named appropriately?
# No, this is just a pair of values
#print numpy.median(p.samples)
# --------------------------------------------------------------------
print pangloss.doubledashedline
return
# ======================================================================
if __name__ == '__main__':
Reconstruct(sys.argv[1:])
# ======================================================================