-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
232 lines (172 loc) · 7.34 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from sklearn.neighbors import KernelDensity
from scipy.signal import find_peaks
import numpy as np
import cv2 as cv
def display(title, img):
cv.namedWindow(title, cv.WINDOW_NORMAL)
cv.imshow(title, img)
def bordered_stack(imgs, axis):
assert axis == 0 or axis == 1, 'axis must be 0 or 1'
i = 1
if axis == 0:
while i < len(imgs):
imgs.insert(i, np.zeros((3, imgs[i].shape[1]), np.uint8))
i += 2
return np.vstack(imgs)
else:
while i < len(imgs):
imgs.insert(i, np.zeros((3, imgs[i].shape[0]), np.uint8))
i += 2
return np.hstack(imgs)
def in_range(num, low, high):
return num >= low and num < high
def similar(a, b, ratio=0.95):
small, big = min(abs(a), abs(b)), max(abs(a), abs(b))
return small / big >= ratio
def kde_breaks(samples, bandwidth):
samples = samples.reshape(-1, 1)
resolution = len(samples) * 10
domain = np.linspace(min(samples), max(samples), resolution)
kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(samples)
density = np.exp(kde.score_samples(domain.reshape(-1, 1)))
minima = min(samples) + find_peaks(-density)[0] / resolution * (max(samples)-min(samples))
return minima
def share_rect_area(xywh1, xywh2, ratio=0.7):
x1, y1, w1, h1 = xywh1
x2, y2, w2, h2 = xywh2
width = min(x1+w1, x2+w2) - max(x1, x2)
height = min(y1+h1, y2+h2) - max(y1, y2)
return width * height / min(abs(w1*h1), abs(w2*h2)) > ratio
def order_rect_points(points):
"""Order rectangle vertices as [tl, tr, br, bl]"""
rect = np.zeros((4, 2), np.float32)
s = points.sum(axis=1)
rect[0] = points[np.argmin(s)]
rect[2] = points[np.argmax(s)]
d = np.diff(points, axis=1)
rect[1] = points[np.argmin(d)]
rect[3] = points[np.argmax(d)]
return rect
def four_point_transform(img, points):
assert points.shape == (4, 2), 'points must have dimension of (4, 2)'
rect = order_rect_points(points)
tl, tr, br, bl = rect
max_width = int(max(np.linalg.norm(tl - tr), np.linalg.norm(bl - br)))
max_height = int(max(np.linalg.norm(tl - bl), np.linalg.norm(tr - br)))
dst = np.array([
[0, 0],
[max_width-1, 0],
[max_width-1, max_height-1],
[0, max_height-1]], np.float32)
M = cv.getPerspectiveTransform(rect, dst)
return cv.warpPerspective(img, M, (max_width, max_height))
def page_detect_contour(img, k_blur=15):
# img = cv.imread('/home/dlzou/code/projects/omr/media/uploaded_img/IMG_3341.png')
blurred = cv.medianBlur(img, k_blur)
edges = cv.dilate(cv.Canny(blurred, 30, 100), np.ones((3, 3), np.uint8))
# frame_edges = [
# edges[0, :], # top
# edges[:,0], # left
# edges[edges.shape[0]-1, :], # bottom
# edges[:, edges.shape[1]-1]] # right
contours, hierarchy = cv.findContours(edges, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv.contourArea, reverse=True)[:5]
page_contour = None
for c in contours:
perimeter = cv.arcLength(c, True)
approx = cv.approxPolyDP(c, 0.02*perimeter, True)
if len(approx) == 4:
page_contour = approx
break
if page_contour is not None:
warped = four_point_transform(img, page_contour.reshape(4, 2))
return warped
# cv.drawContours(img, [page_contour], 0, (0, 255, 0), 3)
# display('Warped', warped)
# blurred[edges > 0] = (0, 255, 0)
# display('Original', np.hstack((img, blurred)))
# cv.waitKey(0)
# cv.destroyAllWindows()
print('cvutil.page_detection_contour(): failed to detect page')
return None
def page_detect_line(img, k_blur=25):
img = cv.imread('/home/dlzou/code/projects/omr/media/uploaded_img/IMG_3350.jpg')
blurred = cv.medianBlur(img, k_blur)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
edges = cv.dilate(cv.Canny(gray, 30, 150), np.ones((3, 3), np.uint8))
lines = cv.HoughLinesP(edges, rho=1, theta=np.pi/360, threshold=100, minLineLength=300, maxLineGap=50)
for line in lines:
for x1, y1, x2, y2 in line:
cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 3)
# calculate average lines
# calculate line intersections that form largest area
# k-mean clustering with 4 centroids
blurred[edges > 0] = (0, 255, 0)
display('Original', np.hstack((img, blurred)))
cv.waitKey(0)
cv.destroyAllWindows()
def bleach_shadows(img):
"""Perform white image adjustment"""
assert img.ndim == 2, 'img must be grayscale'
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (9, 9))
blurred = cv.GaussianBlur(img, (3, 3), 0)
closed = cv.morphologyEx(blurred, cv.MORPH_CLOSE, kernel)
adjusted = blurred / closed
return np.uint8(cv.normalize(adjusted, adjusted, 0, 255, cv.NORM_MINMAX))
def dissect_rows(img, binary, low_bound=2, min_height=30):
assert binary.ndim == 2, 'binary must be negative binary'
assert binary.shape[:2] == img.shape[:2], 'binary and img must have same height and width'
# row_chart = np.zeros(bin.shape, np.uint8)
projection_y = binary.sum(axis=1) / 255
row_ranges = []
top = -1
for i, size in enumerate(projection_y):
size = int(size)
if top == -1:
if size > low_bound:
top = i
elif size <= low_bound:
if i-top >= min_height:
row_ranges.append((top, i))
top = -1
# row_chart[i, :size] += 255
# col_charts = []
# for top, bottom in row_ranges:
# cropped_bin = bin[top:bottom, :bin.shape[1]]
# projection_x = cropped_bin.sum(axis=0) / 255
# col_chart = np.zeros((bottom-top, bin.shape[1]), np.uint8)
# for i, size in enumerate(projection_x):
# size = int(size)
# col_chart[col_chart.shape[0]-size:, i] += 255
# col_charts.append(col_chart)
row_binaries, row_imgs = [], []
for top, bottom in row_ranges:
row_binaries.append(binary[top:bottom+1, :binary.shape[1]])
row_imgs.append(img[top:bottom+1, :img.shape[1]])
# display('Row Chart', row_chart)
# display('Column Chart', bordered_stack(col_charts, 0))
return row_imgs, row_binaries, row_ranges
def fill_object(img, binary, seed, expand=1):
assert isinstance(seed, tuple)
mask = np.zeros(tuple(s+2 for s in binary.shape), np.uint8)
area, binary, mask, (x, y, w, h) = cv.floodFill(binary, mask, seed, (127), (0), (0), flags=(8 | 255 << 8))
mask = mask[1:-1, 1:-1]
mask = cv.dilate(mask, np.ones((2*expand+1, 2*expand+1), np.uint8)) \
[max(0, y-expand) : y+h+expand, max(0, x-expand) : x+w+expand]
img = img[max(0, y-expand) : y+h+expand, max(0, x-expand) : x+w+expand]
assert img.shape == mask.shape, 'img and mask must have same shape'
result = np.ones(mask.shape, np.uint8) * 255
cropped = cv.bitwise_and(img, img, mask=mask)
result[mask == 255] = cropped[mask == 255]
# xywh = (max(0, x-expand), max(0, y-expand), result.shape[1], result.shape[0])
# display('object ' + str(xywh), result)
return (x, y, w, h), result
def dissect_objects(img, binary):
obj_dict = {}
for pos, pixel in np.ndenumerate(binary):
if pixel > 250:
xywh, obj = fill_object(img, binary, (pos[1], pos[0]))
obj_dict[xywh] = obj
return obj_dict
if __name__ == '__main__':
page_detect_contour(1)