forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12-month-cycle-in-cross-section-of-stocks-returns.py
153 lines (117 loc) · 6.1 KB
/
12-month-cycle-in-cross-section-of-stocks-returns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# https://quantpedia.com/strategies/12-month-cycle-in-cross-section-of-stocks-returns/
#
# The top 30% of firms based on their market cap from NYSE and AMEX are part of the investment universe. Every month, stocks are grouped
# into ten portfolios (with an equal number of stocks in each portfolio) according to their performance in one month one year ago. Investors
# go long in stocks from the winner decile and shorts stocks from the loser decile. The portfolio is equally weighted and rebalanced every month.
#
# QC implementation changes:
# - Universe consists of top 3000 US stock by market cap from NYSE, AMEX and NASDAQ.
# - Portfolio is value weighted.
from AlgorithmImports import *
class Month12CycleinCrossSectionofStocksReturns(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.coarse_count = 500
# Monthly close data.
self.data = {}
self.period = 13
self.weight = {}
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.BeforeMarketClose(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(10)
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
# Update the rolling window every month.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, self.period)
history = self.History(symbol, self.period*30, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes = history.loc[symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.iteritems()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[symbol].update(time_close[1])
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and x.CompanyReference.IsREIT != 1 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
if len(fine) > self.coarse_count:
sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
top_by_market_cap = sorted_by_market_cap[:self.coarse_count]
else:
top_by_market_cap = fine
# Performance sorting. One month performance, one year ago with market cap data.
performance_market_cap = { x.Symbol : (self.data[x.Symbol].performance(), x.MarketCap) for x in top_by_market_cap if x.Symbol in self.data and self.data[x.Symbol].is_ready()}
long = []
short = []
if len(performance_market_cap) >= 10:
sorted_by_perf = sorted(performance_market_cap.items(), key = lambda x:x[1][0], reverse = True)
decile = int(len(sorted_by_perf) / 10)
long = [x for x in sorted_by_perf[:decile]]
short = [x for x in sorted_by_perf[-decile:]]
total_market_cap_long = sum([x[1][1] for x in long])
for symbol, perf_market_cap in long:
self.weight[symbol] = perf_market_cap[1] / total_market_cap_long
total_market_cap_short = sum([x[1][1] for x in short])
for symbol, perf_market_cap in short:
self.weight[symbol] = perf_market_cap[1] / total_market_cap_short
return [x[0] for x in self.weight.items()]
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.weight:
self.Liquidate(symbol)
for symbol, w in self.weight.items():
self.SetHoldings(symbol, w)
self.weight.clear()
def Selection(self):
self.selection_flag = True
class SymbolData():
def __init__(self, symbol, period):
self.Symbol = symbol
self.Window = RollingWindow[float](period)
def update(self, value):
self.Window.Add(value)
def is_ready(self):
return self.Window.IsReady
# One month performance, one year ago.
def performance(self):
values = [x for x in self.Window]
return (values[-2] / values[-1] - 1)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))