From 03d570605694a3583c9f69e7bab71d42ffa20641 Mon Sep 17 00:00:00 2001 From: njzjz Date: Mon, 6 Nov 2023 23:23:45 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20deepmode?= =?UTF-8?q?ling/blog@e89f992bb6fa6a6cccf5c02bcbf66ffe2e679a2a=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 2022_csi_workshop/index.html | 2 +- archives/2021/06/index.html | 2 +- archives/2021/07/index.html | 2 +- archives/2021/index.html | 2 +- archives/2022/07/index.html | 2 +- archives/2022/index.html | 2 +- archives/index.html | 2 +- atom.xml | 2 +- categories/index.html | 2 +- categories/tutorial/index.html | 2 +- css/main.css | 2 +- index.html | 4 ++-- manifesto/index.html | 2 +- papers/deepmd-kit/index.html | 4 ++-- papers/dpgen/index.html | 2 +- papers/index.html | 2 +- papers/others.html | 2 +- papers/reviews.html | 2 +- search.xml | 2 +- sitemap.xml | 2 +- tags/DeePMD-kit/index.html | 2 +- tutorial1/index.html | 4 ++-- tutorial2/index.html | 2 +- 23 files changed, 26 insertions(+), 26 deletions(-) diff --git a/2022_csi_workshop/index.html b/2022_csi_workshop/index.html index 267750f..d8d5e3b 100644 --- a/2022_csi_workshop/index.html +++ b/2022_csi_workshop/index.html @@ -1 +1 @@ -2022 CSI Workshop: Deep Modeling for Molecular Simulation | DeepModeling

2022 CSI Workshop: Deep Modeling for Molecular Simulation

Lecture 1: Deep Potential Method for Molecular Simulation, Roberto Car

Lecture 2: Deep Potential at Scale, Linfeng Zhang

Lecture 3: Towards a Realistic Description of H3O+ and OH- Transport, Robert A. DiStasio Jr.

Lecture 4: Next Generation Quantum and Deep Learning Potentials, Darrin York

Lecture 5: Linear Response Theory of Transport in Condensed Matter, Stefano Baroni

Lecture 6: Deep Modeling with Long-Range Electrostatic Interactions, Chunyi Zhang

Hands-on session 4: Machine learning of Wannier centers and dipoles

Hands-on session 5: Long range electrostatic interactions with DPLR

Hands-on session 6: Concurrent learning with DP-GEN

0%
\ No newline at end of file +2022 CSI Workshop: Deep Modeling for Molecular Simulation | DeepModeling

2022 CSI Workshop: Deep Modeling for Molecular Simulation

Lecture 1: Deep Potential Method for Molecular Simulation, Roberto Car

Lecture 2: Deep Potential at Scale, Linfeng Zhang

Lecture 3: Towards a Realistic Description of H3O+ and OH- Transport, Robert A. DiStasio Jr.

Lecture 4: Next Generation Quantum and Deep Learning Potentials, Darrin York

Lecture 5: Linear Response Theory of Transport in Condensed Matter, Stefano Baroni

Lecture 6: Deep Modeling with Long-Range Electrostatic Interactions, Chunyi Zhang

Hands-on session 4: Machine learning of Wannier centers and dipoles

Hands-on session 5: Long range electrostatic interactions with DPLR

Hands-on session 6: Concurrent learning with DP-GEN

0%
\ No newline at end of file diff --git a/archives/2021/06/index.html b/archives/2021/06/index.html index 4a1bc8d..32c6f39 100644 --- a/archives/2021/06/index.html +++ b/archives/2021/06/index.html @@ -1 +1 @@ -Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file +Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file diff --git a/archives/2021/07/index.html b/archives/2021/07/index.html index 68a349b..0aee64f 100644 --- a/archives/2021/07/index.html +++ b/archives/2021/07/index.html @@ -1 +1 @@ -Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

Um..! 4 posts in total. Keep on posting.
2021
0%
\ No newline at end of file +Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

Um..! 4 posts in total. Keep on posting.
2021
0%
\ No newline at end of file diff --git a/archives/2021/index.html b/archives/2021/index.html index 75bce05..17510d4 100644 --- a/archives/2021/index.html +++ b/archives/2021/index.html @@ -1 +1 @@ -Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file +Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file diff --git a/archives/2022/07/index.html b/archives/2022/07/index.html index 83eab1e..1411c97 100644 --- a/archives/2022/07/index.html +++ b/archives/2022/07/index.html @@ -1 +1 @@ -Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

Um..! 4 posts in total. Keep on posting.
2022
0%
\ No newline at end of file +Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

Um..! 4 posts in total. Keep on posting.
2022
0%
\ No newline at end of file diff --git a/archives/2022/index.html b/archives/2022/index.html index 2c6d252..69da4ab 100644 --- a/archives/2022/index.html +++ b/archives/2022/index.html @@ -1 +1 @@ -Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

Um..! 4 posts in total. Keep on posting.
2022
0%
\ No newline at end of file +Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

Um..! 4 posts in total. Keep on posting.
2022
0%
\ No newline at end of file diff --git a/archives/index.html b/archives/index.html index 9188638..ae56994 100644 --- a/archives/index.html +++ b/archives/index.html @@ -1 +1 @@ -Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file +Archive | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file diff --git a/atom.xml b/atom.xml index c755e54..9c2570d 100644 --- a/atom.xml +++ b/atom.xml @@ -6,5 +6,5 @@ A[Prepare data] --&gt; B[Training] B --&gt; C[Freeze the model] </pre> -<p>What? Only three steps? Yes, it&#39;s that simple.The DeepModeling Manifestohttps://deepmodeling.com/blog/manifesto/2021-06-09T16:00:00.000Z2021-06-09T16:00:00.000Z

The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding
frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other's work, and of the pursuit of harmony among diversity.

The DeepModeling community is a community of such a group of people.

What is DeepModeling?

The two most important applications of computing are machine learning and physical modeling. The former is an effective tool for analyzing complex data; the latter is a scientific description of the physical world. The vitality boosted by the effective integration of the two is changing all aspects of scientific research. DeepModeling will ultimately be a set of methodologies and tools that combine machine learning, physical modeling, and cutting-edge computational platforms. People who are attracted by the DeepModeling community are attracted by its open, inclusive environment, as well as its dedication to the cause of advancing scientific computing worldwide.

Why choose open source?

There are different interpretations of the term "open source". The consensus among the DeepModeling community is that open source is a collaborative software development platform based on the spirit of openness and sharing. Open source is a familiar concept for people in the fields of machine learning and computer science, but it is not yet popular in the field of scientific computing. What we advocate is that an algorithm or software should not be judged by the reputation of the journal in which it is published, but by its ability to solve real world problems and its actual contribution to science. The sustainable development of a software requires continuous investment in manpower. It should undergo incremental improvement, and it should be put to the test of solving real-world problems in an open environment. This is often difficult to achieve by individuals or individual groups. The open-source community provides better solutions.

The history of the DeepModeling community

The "DeepModeling Community" started with the initiation of the "deepmd-kit" project. “deepmd-kit" is a software tool that combines machine learning and molecular dynamics, which helps to overcome a long-standing difficulty in the field of molecular dynamics, namely the dilemma of having to choose between efficiency and accuracy. The name "DeepModeling" was proposed by early developers of the deepmd-kit project, with the intention of using deep learning tools to solve the curse of dimensionality problem in multi-scale modeling. DeepModeling has therefore become the name of the GitHub organization (https://github.com/deepmodeling) which manages the original deepmd-kit project. After the development of deepmd-kit, the DeepModeling community has successively initiated projects such as dpdata, dp-gen, and dpdispatcher, and extended the modeling scale to electronic structure level through projects such as deepks-kit and ABACUS. These projects have brought together people from all over the world working on molecular simulations.

The short-term plan and long-term vision of the DeepModeling community

In the short term, developers in the DeepModeling community will focus on atomic-scale simulation methods and tools. This includes solving the many-body Schrödinger equation, electronic structure calculation, molecular dynamics simulation, and coarse-grained molecular dynamics simulation. This also includes tasks such as data generation, model training, high-performance optimization, etc. In addition, it includes different workflows and management tools, as well as computing power scheduling tools for different systems, different scenarios, and different purposes.

It should be pointed out that the combination of physical modeling and machine learning often fundamentally changes the implementation logic of a piece of software. Therefore, the new infrastructure will not be settled once and for all, but will be gradually improved through an iterative process and upgrades from time to time.

In the long run, the DeepModeling community is committed to combining physical models at all scales with machine learning methods, using the most cutting-edge computing platforms to solve the most challenging scientific and technological problems faced by the human society.

How can you contribute?

If you want to contribute to an existing project in the DeepModeling community, please just do so or contact
the corresponding developer directly; if you want to open a new project in the DeepModeling community, or if you want the DeepModeling community to help develop your project, just contact contact@deepmodeling.org.

If you are a programmer who loves science and is attracted by the future scientific computing platform built by the DeepModeling community, you can contribute not only through new algorithms, but also code development specifications, document writing specifications, community databases, task scheduling, workflow management and other tools. In addition, you can contribute to code architecture design and high-performance optimization tasks in the DeepModeling community. People in the field of scientific computing will greatly appreciate your expertise and contribution.

If you are a hardcore developer familiar with topics such as electronic structure calculations, molecular dynamics, and finite element methods, the DeepModeling community will be your place to showcase your talents. The addition of machine learning components requires us to rethink about architecture design, each specific implementation for the tasks mentioned above and high-performance optimization. You will become important bridges that connect other developers, contributors, and users in different areas.

If you have only used some basic scientific software and have worked on some post-processing scripts, the DeepModeling community also needs you. Try to ask questions and communicate on github/gitee and other communication platforms, try to give opinions, and try to fork, commit, pr... Your little by little contribution will make the DeepModeling community better and better, and the DeepModeling community will be very grateful for such contributions.

Even if you are just a bystander, if you support the concept of the DeepModeling community, your recognition and dissemination will also be a great encouragement and support for the DeepModeling community.

Final remarks

Despite the tremendous advances in AI and computing power, the scientific computing community is largely embedded in an old-fashioned culture. Many of the most important tasks rely on legacy codes. The core algorithms used in many commercial software have been outdated. The self-sufficient style of work is similar to that of the agricultural ages
resulting in poor efficiency. It is only in recent years that some promising open-source communities have emerged. However, these communities are often aimed at specific tools for specific scales, and are often maintained by specific academic research groups. They face serious challenges in terms of continuous development and improved user experience.

The DeepModeling project promises to change all that.

The combination of machine learning and physical modeling calls for a new paradigm, the open-source community paradigm. Such a paradigm has long been embraced in the computer and electronics industry, with Linux and Andriod being the very well-known examples. In this sense, what the DeepModeling project does is to borrow these ideas and use them for scientific computing. For people in computational science and engineering, efficient and reusable modeling tools that can be continuously improved will free researchers from the plight of no model or with only ad hoc models. For those who work on machine learning, the world of physical models will provide a relatively new and surely vast playground. Working together as an open-source community will make our work more productive, up to date, reliable, and transparent. The spirit of close collaboration, of respect and building on each other’s work will surely inspire more and more people to join the cause of advancing computing for the benefit of the human society. This is an exciting opportunity. This is the future of scientific computing!

]]>
<p>The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding<br>frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other&#39;s work, and of the pursuit of harmony among diversity.</p> +<p>What? Only three steps? Yes, it&#39;s that simple.
The DeepModeling Manifestohttps://deepmodeling.com/blog/manifesto/2021-06-09T16:00:00.000Z2021-06-09T16:00:00.000Z

The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding
frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other's work, and of the pursuit of harmony among diversity.

The DeepModeling community is a community of such a group of people.

What is DeepModeling?

The two most important applications of computing are machine learning and physical modeling. The former is an effective tool for analyzing complex data; the latter is a scientific description of the physical world. The vitality boosted by the effective integration of the two is changing all aspects of scientific research. DeepModeling will ultimately be a set of methodologies and tools that combine machine learning, physical modeling, and cutting-edge computational platforms. People who are attracted by the DeepModeling community are attracted by its open, inclusive environment, as well as its dedication to the cause of advancing scientific computing worldwide.

Why choose open source?

There are different interpretations of the term "open source". The consensus among the DeepModeling community is that open source is a collaborative software development platform based on the spirit of openness and sharing. Open source is a familiar concept for people in the fields of machine learning and computer science, but it is not yet popular in the field of scientific computing. What we advocate is that an algorithm or software should not be judged by the reputation of the journal in which it is published, but by its ability to solve real world problems and its actual contribution to science. The sustainable development of a software requires continuous investment in manpower. It should undergo incremental improvement, and it should be put to the test of solving real-world problems in an open environment. This is often difficult to achieve by individuals or individual groups. The open-source community provides better solutions.

The history of the DeepModeling community

The "DeepModeling Community" started with the initiation of the "deepmd-kit" project. “deepmd-kit" is a software tool that combines machine learning and molecular dynamics, which helps to overcome a long-standing difficulty in the field of molecular dynamics, namely the dilemma of having to choose between efficiency and accuracy. The name "DeepModeling" was proposed by early developers of the deepmd-kit project, with the intention of using deep learning tools to solve the curse of dimensionality problem in multi-scale modeling. DeepModeling has therefore become the name of the GitHub organization (https://github.com/deepmodeling) which manages the original deepmd-kit project. After the development of deepmd-kit, the DeepModeling community has successively initiated projects such as dpdata, dp-gen, and dpdispatcher, and extended the modeling scale to electronic structure level through projects such as deepks-kit and ABACUS. These projects have brought together people from all over the world working on molecular simulations.

The short-term plan and long-term vision of the DeepModeling community

In the short term, developers in the DeepModeling community will focus on atomic-scale simulation methods and tools. This includes solving the many-body Schrödinger equation, electronic structure calculation, molecular dynamics simulation, and coarse-grained molecular dynamics simulation. This also includes tasks such as data generation, model training, high-performance optimization, etc. In addition, it includes different workflows and management tools, as well as computing power scheduling tools for different systems, different scenarios, and different purposes.

It should be pointed out that the combination of physical modeling and machine learning often fundamentally changes the implementation logic of a piece of software. Therefore, the new infrastructure will not be settled once and for all, but will be gradually improved through an iterative process and upgrades from time to time.

In the long run, the DeepModeling community is committed to combining physical models at all scales with machine learning methods, using the most cutting-edge computing platforms to solve the most challenging scientific and technological problems faced by the human society.

How can you contribute?

If you want to contribute to an existing project in the DeepModeling community, please just do so or contact
the corresponding developer directly; if you want to open a new project in the DeepModeling community, or if you want the DeepModeling community to help develop your project, just contact contact@deepmodeling.org.

If you are a programmer who loves science and is attracted by the future scientific computing platform built by the DeepModeling community, you can contribute not only through new algorithms, but also code development specifications, document writing specifications, community databases, task scheduling, workflow management and other tools. In addition, you can contribute to code architecture design and high-performance optimization tasks in the DeepModeling community. People in the field of scientific computing will greatly appreciate your expertise and contribution.

If you are a hardcore developer familiar with topics such as electronic structure calculations, molecular dynamics, and finite element methods, the DeepModeling community will be your place to showcase your talents. The addition of machine learning components requires us to rethink about architecture design, each specific implementation for the tasks mentioned above and high-performance optimization. You will become important bridges that connect other developers, contributors, and users in different areas.

If you have only used some basic scientific software and have worked on some post-processing scripts, the DeepModeling community also needs you. Try to ask questions and communicate on github/gitee and other communication platforms, try to give opinions, and try to fork, commit, pr... Your little by little contribution will make the DeepModeling community better and better, and the DeepModeling community will be very grateful for such contributions.

Even if you are just a bystander, if you support the concept of the DeepModeling community, your recognition and dissemination will also be a great encouragement and support for the DeepModeling community.

Final remarks

Despite the tremendous advances in AI and computing power, the scientific computing community is largely embedded in an old-fashioned culture. Many of the most important tasks rely on legacy codes. The core algorithms used in many commercial software have been outdated. The self-sufficient style of work is similar to that of the agricultural ages
resulting in poor efficiency. It is only in recent years that some promising open-source communities have emerged. However, these communities are often aimed at specific tools for specific scales, and are often maintained by specific academic research groups. They face serious challenges in terms of continuous development and improved user experience.

The DeepModeling project promises to change all that.

The combination of machine learning and physical modeling calls for a new paradigm, the open-source community paradigm. Such a paradigm has long been embraced in the computer and electronics industry, with Linux and Andriod being the very well-known examples. In this sense, what the DeepModeling project does is to borrow these ideas and use them for scientific computing. For people in computational science and engineering, efficient and reusable modeling tools that can be continuously improved will free researchers from the plight of no model or with only ad hoc models. For those who work on machine learning, the world of physical models will provide a relatively new and surely vast playground. Working together as an open-source community will make our work more productive, up to date, reliable, and transparent. The spirit of close collaboration, of respect and building on each other’s work will surely inspire more and more people to join the cause of advancing computing for the benefit of the human society. This is an exciting opportunity. This is the future of scientific computing!

]]>
<p>The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding<br>frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other&#39;s work, and of the pursuit of harmony among diversity.</p> <p>The DeepModeling community is a community of such a group of people.</p>
\ No newline at end of file diff --git a/categories/index.html b/categories/index.html index db3e178..028a2e4 100644 --- a/categories/index.html +++ b/categories/index.html @@ -1 +1 @@ -Categories | DeepModeling

DeepModeling

Define the future of scientific computing together

Categories

1 category in total
0%
\ No newline at end of file +Categories | DeepModeling

DeepModeling

Define the future of scientific computing together

Categories

1 category in total
0%
\ No newline at end of file diff --git a/categories/tutorial/index.html b/categories/tutorial/index.html index 92e7636..4ba6aea 100644 --- a/categories/tutorial/index.html +++ b/categories/tutorial/index.html @@ -1 +1 @@ -Category: tutorial | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file +Category: tutorial | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file diff --git a/css/main.css b/css/main.css index 0203dda..55edaa3 100644 --- a/css/main.css +++ b/css/main.css @@ -3,4 +3,4 @@ * * @stackoverflow/stacks v0.56.0 * https://github.com/StackExchange/Stacks - */.hljs{display:block;overflow-x:auto;padding:.5em;color:#fff;background:#1c1b1b}.hljs-comment{color:#999}.hljs-attr,.hljs-doctag,.hljs-keyword,.hljs-meta,.hljs-meta-keyword,.hljs-section,.hljs-selector-class,.hljs-selector-pseudo,.hljs-selector-tag{color:#88aece}.hljs-attribute{color:v#c59bc1}.hljs-built_in,.hljs-literal,.hljs-name,.hljs-number,.hljs-quote,.hljs-selector-id,.hljs-template-tag,.hljs-title,.hljs-type{color:#f08d49}.hljs-link,.hljs-meta-string,.hljs-regexp,.hljs-selector-attr,.hljs-string,.hljs-symbol,.hljs-template-variable,.hljs-variable{color:#b5bd68}.hljs-bullet,.hljs-code{color:#ccc}.hljs-deletion{color:#de7176}.hljs-addition{color:#76c490}.hljs-emphasis{font-style:italic}.hljs-strong{font-weight:700}}.highlight:hover .copy-btn,pre:hover .copy-btn{opacity:1}figure.highlight .table-container{position:relative}.copy-btn{color:#333;cursor:pointer;line-height:1.6;opacity:0;padding:2px 6px;position:absolute;transition:opacity .2s ease-in-out;background-color:#eee;background-image:linear-gradient(#fcfcfc,#eee);border:1px solid #d5d5d5;border-radius:3px;font-size:.8125em;right:4px;top:8px}code,figure.highlight,kbd,pre{background:var(--highlight-background);color:var(--highlight-foreground)}figure.highlight,pre{line-height:1.6;margin:0 auto 20px}figure.highlight figcaption,pre .caption,pre figcaption{background:var(--highlight-gutter-background);color:var(--highlight-foreground);display:flow-root;font-size:.875em;line-height:1.2;padding:.5em}figure.highlight figcaption a,pre .caption a,pre figcaption a{color:var(--highlight-foreground);float:right}figure.highlight figcaption a:hover,pre .caption a:hover,pre figcaption a:hover{border-bottom-color:var(--highlight-foreground)}code,pre{font-family:consolas,Menlo,monospace,'PingFang SC','Microsoft YaHei'}code{border-radius:3px;font-size:.875em;padding:2px 4px;overflow-wrap:break-word}kbd{border:2px solid #ccc;border-radius:.2em;box-shadow:.1em .1em .2em rgba(0,0,0,.1);font-family:inherit;padding:.1em .3em;white-space:nowrap}figure.highlight{overflow:auto;position:relative}figure.highlight pre{border:0;margin:0;padding:10px 0}figure.highlight table{border:0;margin:0;width:auto}figure.highlight td{border:0;padding:0}figure.highlight .gutter{-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}figure.highlight .gutter pre{background:var(--highlight-gutter-background);color:var(--highlight-gutter-foreground);padding-left:10px;padding-right:10px;text-align:right}figure.highlight .code pre{padding-left:10px;width:100%}figure.highlight .marked{background:rgba(0,0,0,.3)}pre .caption,pre figcaption{margin-bottom:10px}.gist table{width:auto}.gist table td{border:0}pre code{background:0 0;padding:0;text-shadow:none}.blockquote-center{border-left:0;margin:40px 0;padding:0;position:relative;text-align:center}.blockquote-center::after,.blockquote-center::before{left:0;line-height:1;opacity:.6;position:absolute;width:100%}.blockquote-center::before{border-top:1px solid #ccc;text-align:left;top:-20px;content:'\f10d';font-family:'Font Awesome 6 Free';font-weight:900}.blockquote-center::after{border-bottom:1px solid #ccc;bottom:-20px;text-align:right;content:'\f10e';font-family:'Font Awesome 6 Free';font-weight:900}.blockquote-center div,.blockquote-center p{text-align:center}.group-picture{margin-bottom:20px}.group-picture .group-picture-row{display:flex;gap:3px;margin-bottom:3px}.group-picture .group-picture-column{flex:1}.group-picture .group-picture-column img{height:100%;margin:0;object-fit:cover;width:100%}.post-body .label{color:#555;padding:0 2px}.post-body .label.default{background:#f0f0f0}.post-body .label.primary{background:#efe6f7}.post-body .label.info{background:#e5f2f8}.post-body .label.success{background:#e7f4e9}.post-body .label.warning{background:#fcf6e1}.post-body .label.danger{background:#fae8eb}.post-body .link-grid{display:grid;grid-gap:1.5rem;gap:1.5rem;grid-template-columns:1fr 1fr;margin-bottom:20px;padding:1rem}.post-body .link-grid .link-grid-container{border:solid #ddd;box-shadow:1rem 1rem .5rem rgba(0,0,0,.5);min-height:5rem;min-width:0;padding:.5rem;position:relative;transition:background .3s}.post-body .link-grid .link-grid-container:hover{animation:.5s next-shake;background:var(--card-bg-color)}.post-body .link-grid .link-grid-container:active{box-shadow:.5rem .5rem .25rem rgba(0,0,0,.5);transform:translate(.2rem,.2rem)}.post-body .link-grid .link-grid-container .link-grid-image{border:1px solid #ddd;border-radius:50%;box-sizing:border-box;height:5rem;padding:3px;position:absolute;width:5rem}.post-body .link-grid .link-grid-container p{margin:0 1rem 0 6rem}.post-body .link-grid .link-grid-container p:first-of-type{font-size:1.2em}.post-body .link-grid .link-grid-container p:last-of-type{font-size:.8em;line-height:1.3rem;opacity:.7}.post-body .link-grid .link-grid-container a{border:0;height:100%;left:0;position:absolute;top:0;width:100%}@keyframes next-shake{0%{transform:translate(1pt,1pt) rotate(0)}10%{transform:translate(-1pt,-2pt) rotate(-1deg)}20%{transform:translate(-3pt,0) rotate(1deg)}30%{transform:translate(3pt,2pt) rotate(0)}40%{transform:translate(1pt,-1pt) rotate(1deg)}50%{transform:translate(-1pt,2pt) rotate(-1deg)}60%{transform:translate(-3pt,1pt) rotate(0)}70%{transform:translate(3pt,1pt) rotate(-1deg)}80%{transform:translate(-1pt,-1pt) rotate(1deg)}90%{transform:translate(1pt,2pt) rotate(0)}100%{transform:translate(1pt,-2pt) rotate(-1deg)}}.mermaid{margin-bottom:20px;text-align:center}.post-body .note{border-radius:3px;margin-bottom:20px;padding:1em;position:relative;background:#f5f5f5;border:1px solid transparent}.post-body .note summary{cursor:pointer;outline:0}.post-body .note summary p{display:inline}.post-body .note h2,.post-body .note h3,.post-body .note h4,.post-body .note h5,.post-body .note h6{border-bottom:initial;margin:0;padding-top:0}.post-body .note :first-child{margin-top:0}.post-body .note :last-child{margin-bottom:0}.post-body .note:not(.no-icon){padding-left:2.5em}.post-body .note:not(.no-icon)::before{font-size:1.5em;left:.3em;position:absolute;top:calc(50% - 1em)}.post-body .note.default{background:#f3f3f3;border-color:#e1e1e1;color:#666}.post-body .note.default a:not(.btn){border-bottom-color:#666;color:#666}.post-body .note.default a:not(.btn):hover{border-bottom-color:#454545;color:#454545}.post-body .note.default:not(.no-icon)::before{content:'\f0a9';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.primary{background:#f3daff;border-color:#e1c2ff;color:#6f42c1}.post-body .note.primary a:not(.btn){border-bottom-color:#6f42c1;color:#6f42c1}.post-body .note.primary a:not(.btn):hover{border-bottom-color:#453298;color:#453298}.post-body .note.primary:not(.no-icon)::before{content:'\f055';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.info{background:#d9edf7;border-color:#b3e5ef;color:#31708f}.post-body .note.info a:not(.btn){border-bottom-color:#31708f;color:#31708f}.post-body .note.info a:not(.btn):hover{border-bottom-color:#215761;color:#215761}.post-body .note.info:not(.no-icon)::before{content:'\f05a';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.success{background:#dff0d8;border-color:#d0e6be;color:#3c763d}.post-body .note.success a:not(.btn){border-bottom-color:#3c763d;color:#3c763d}.post-body .note.success a:not(.btn):hover{border-bottom-color:#32562c;color:#32562c}.post-body .note.success:not(.no-icon)::before{content:'\f058';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.warning{background:#fcf4e3;border-color:#fae4cd;color:#8a6d3b}.post-body .note.warning a:not(.btn){border-bottom-color:#8a6d3b;color:#8a6d3b}.post-body .note.warning a:not(.btn):hover{border-bottom-color:#714f30;color:#714f30}.post-body .note.warning:not(.no-icon)::before{content:'\f06a';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.danger{background:#f2dfdf;border-color:#ebcdd2;color:#a94442}.post-body .note.danger a:not(.btn){border-bottom-color:#a94442;color:#a94442}.post-body .note.danger a:not(.btn):hover{border-bottom-color:#84333f;color:#84333f}.post-body .note.danger:not(.no-icon)::before{content:'\f056';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .tabs{margin-bottom:20px}.post-body .tabs,.tabs-comment{padding-top:10px}.post-body .tabs ul.nav-tabs,.tabs-comment ul.nav-tabs{background:var(--content-bg-color);display:flex;display:flex;flex-wrap:wrap;justify-content:center;margin:0;padding:0;position:-webkit-sticky;position:sticky;top:0;z-index:5}.post-body .tabs ul.nav-tabs li.tab,.tabs-comment ul.nav-tabs li.tab{border-bottom:1px solid #ddd;border-left:1px solid transparent;border-right:1px solid transparent;border-radius:0;border-top:3px solid transparent;flex-grow:1;list-style-type:none}@media (max-width:413px){.post-body .tabs ul.nav-tabs,.tabs-comment ul.nav-tabs{display:block;margin-bottom:5px}.post-body .tabs ul.nav-tabs li.tab,.tabs-comment ul.nav-tabs li.tab{border-bottom:1px solid transparent;border-left:3px solid transparent;border-right:1px solid transparent;border-top:1px solid transparent;border-radius:0}}.post-body .tabs ul.nav-tabs li.tab a,.tabs-comment ul.nav-tabs li.tab a{border-bottom:initial;display:block;line-height:1.8;padding:.25em .75em;text-align:center;transition:.2s ease-out}.post-body .tabs ul.nav-tabs li.tab a i,.tabs-comment ul.nav-tabs li.tab a i{width:1.285714285714286em}.post-body .tabs ul.nav-tabs li.tab.active,.tabs-comment ul.nav-tabs li.tab.active{border-color:#fc6423 #ddd transparent}@media (max-width:413px){.post-body .tabs ul.nav-tabs li.tab.active,.tabs-comment ul.nav-tabs li.tab.active{border-color:#ddd #ddd #ddd #fc6423}}.post-body .tabs ul.nav-tabs li.tab.active a,.tabs-comment ul.nav-tabs li.tab.active a{cursor:default}.post-body .tabs .tab-content,.tabs-comment .tab-content{border:1px solid #ddd;border-radius:0;border-top-color:transparent}@media (max-width:413px){.post-body .tabs .tab-content,.tabs-comment .tab-content{border-radius:0;border-top-color:#ddd}}.post-body .tabs .tab-content .tab-pane,.tabs-comment .tab-content .tab-pane{padding:20px 20px 0}.post-body .tabs .tab-content .tab-pane:not(.active),.tabs-comment .tab-content .tab-pane:not(.active){display:none}.pagination .next,.pagination .page-number,.pagination .prev,.pagination .space{display:inline-block;margin:-1px 10px 0;padding:0 10px}.pagination .page-number.current{background:#ccc;border-color:#ccc;color:var(--content-bg-color)}.pagination{border-top:1px solid #eee;margin:120px 0 0;text-align:center}.pagination .next,.pagination .page-number,.pagination .prev{border-bottom:0;border-top:1px solid #eee;transition:border-color .2s ease-in-out}.pagination .next:hover,.pagination .page-number:hover,.pagination .prev:hover{border-top-color:var(--link-hover-color)}@media (max-width:767px){.post-body .link-grid{grid-template-columns:1fr}.pagination .next,.pagination .page-number,.pagination .prev,.pagination .space{margin:0 5px}.pagination{border-top:0}.pagination .next,.pagination .page-number,.pagination .prev{border-bottom:1px solid #eee;border-top:0}.pagination .next:hover,.pagination .page-number:hover,.pagination .prev:hover{border-bottom-color:var(--link-hover-color)}.site-meta{text-align:center}}.pagination .space{margin:0;padding:0}.comments{margin-top:60px;overflow:hidden}.comment-button-group{display:flex;display:flex;flex-wrap:wrap;justify-content:center;justify-content:center;margin:1em 0}.comment-button-group .comment-button{margin:.1em .2em}.comment-button-group .comment-button.active{background:var(--btn-default-hover-bg);border-color:var(--btn-default-hover-border-color);color:var(--btn-default-hover-color)}.comment-position{display:none}.comment-position.active{display:block}.tabs-comment{margin-top:4em;padding-top:0}.tabs-comment .comments{margin-top:0;padding-top:0}.headband{background:var(--theme-color);height:3px}@media (max-width:991px){.headband{display:none}}.site-brand-container{display:flex;flex-shrink:0;padding:0 10px}.use-motion .column,.use-motion .site-brand-container .toggle{opacity:0}.site-meta{flex-grow:1;text-align:center}.custom-logo-image{margin-top:20px}@media (max-width:991px){.custom-logo-image{display:none}}.brand{border-bottom:0;color:var(--brand-color);display:inline-block;padding:0}.brand:hover{color:var(--brand-hover-color)}.site-title{font-family:Lato,'PingFang SC','Microsoft YaHei',sans-serif;font-size:1.375em;font-weight:400;line-height:1.5;margin:0}.site-subtitle{color:#ddd;font-size:.8125em;margin:10px 10px 0}.use-motion .custom-logo-image,.use-motion .site-subtitle,.use-motion .site-title{opacity:0;position:relative;top:-10px}.site-nav-right,.site-nav-toggle{display:none}.site-nav-right .toggle,.site-nav-toggle .toggle{color:var(--text-color);padding:10px;width:22px}.site-nav-right .toggle .toggle-line,.site-nav-toggle .toggle .toggle-line{background:var(--text-color);border-radius:1px}@media (max-width:767px){.site-nav-right,.site-nav-toggle{display:flex;flex-direction:column;justify-content:center}.site-nav{--scroll-height:0;height:0;overflow:hidden;transition:height .2s ease-in-out,visibility .2s ease-in-out;visibility:hidden}body:not(.site-nav-on) .site-nav .animated{animation:none}body.site-nav-on .site-nav{height:var(--scroll-height);visibility:unset}}.menu{margin:0;padding:1em 0;text-align:center}.menu-item{display:inline-block;list-style:none;margin:0 10px}@media (max-width:767px){.menu-item{display:block;margin-top:10px}.menu-item.menu-item-search{display:none}}.menu-item a{border-bottom:0;display:block;font-size:.8125em;transition:border-color .2s ease-in-out}.menu-item a.menu-item-active,.menu-item a:hover{background:var(--menu-item-bg-color)}.menu-item .fa,.menu-item .fab,.menu-item .far,.menu-item .fas{margin-right:8px}.menu-item .badge{display:inline-block;font-weight:700;line-height:1;margin-left:.35em;margin-top:.35em;text-align:center;white-space:nowrap}.use-motion .menu-item{visibility:hidden}.book-mark-link{border-bottom:0;position:fixed;top:-10px;transition:top .3s;right:30px}@media (max-width:991px){.book-mark-link{right:20px;display:none}}.book-mark-link::before{color:#222;font-size:32px;line-height:1;content:'\f02e';font-family:'Font Awesome 6 Free';font-weight:900}.book-mark-link-fixed,.book-mark-link:hover{top:-2px}.sidebar-inner{color:#999;padding:18px 10px;text-align:center;display:flex;flex-direction:column;justify-content:center}.cc-license .cc-opacity{border-bottom:0;opacity:.7}.cc-license .cc-opacity:hover{opacity:.9}.cc-license img{display:inline-block}.site-author-image{border:1px solid #eee;max-width:120px;padding:2px}.site-author-name{color:var(--text-color);font-weight:600;margin:0}.site-description{color:#999;font-size:.8125em;margin-top:0}.links-of-author a{font-size:.8125em}.sidebar .sidebar-button:not(:first-child){margin-top:15px}.sidebar .sidebar-button button{background:0 0;cursor:pointer;line-height:2;padding:0 15px;border-radius:4px}.sidebar .sidebar-button button .fa,.sidebar .sidebar-button button .fab,.sidebar .sidebar-button button .far,.sidebar .sidebar-button button .fas{margin-right:5px}.links-of-blogroll{font-size:.8125em}.links-of-blogroll-title{font-size:.875em;font-weight:600}.links-of-blogroll-list{list-style:none;margin:0;padding:0}.sidebar-nav{font-size:.875em;height:0;margin:0;overflow:hidden;padding-left:0;pointer-events:none;transition:height .2s ease-in-out,visibility .2s ease-in-out;visibility:hidden}.sidebar-nav-active .sidebar-nav{height:calc(2em + 1px);pointer-events:unset;visibility:unset}.sidebar-nav li{border-bottom:1px solid transparent;color:var(--text-color);cursor:pointer;display:inline-block;transition:border-bottom-color .2s ease-in-out,color .2s ease-in-out}.sidebar-nav li.sidebar-nav-overview{margin-left:10px}.sidebar-nav li:hover{color:#fc6423}.sidebar-overview-active .sidebar-nav-overview,.sidebar-toc-active .sidebar-nav-toc{border-bottom-color:#fc6423;color:#fc6423;transition-delay:0.2s}.sidebar-overview-active .sidebar-nav-overview:hover,.sidebar-toc-active .sidebar-nav-toc:hover{color:#fc6423}.sidebar-panel-container{align-items:start;display:grid;flex:1;overflow-x:hidden;overflow-y:auto;padding-top:0;transition:padding-top .2s ease-in-out}.sidebar-nav-active .sidebar-panel-container{padding-top:20px}.sidebar-panel{animation:.2s ease-in-out deactivate-sidebar-panel;grid-area:1/1;height:0;opacity:0;overflow:hidden;pointer-events:none;transform:translateY(0);transition:.2s ease-in-out;transition-property:opacity,transform,visibility;visibility:hidden}.sidebar-nav-active .sidebar-panel,.sidebar-overview-active .sidebar-panel.post-toc-wrap{transform:translateY(-20px)}.sidebar-overview-active:not(.sidebar-nav-active) .sidebar-panel.post-toc-wrap{transition-delay:0s,0.2s,0s}.sidebar-overview-active .sidebar-panel.site-overview-wrap,.sidebar-toc-active .sidebar-panel.post-toc-wrap{animation-name:activate-sidebar-panel;height:auto;opacity:1;pointer-events:unset;transform:translateY(0);transition-delay:0.2s,0.2s,0s;visibility:unset}.sidebar-panel.site-overview-wrap{display:flex;flex-direction:column;justify-content:center;gap:10px;justify-content:flex-start}@keyframes deactivate-sidebar-panel{from{height:var(--inactive-panel-height,0)}to{height:var(--active-panel-height,0)}}@keyframes activate-sidebar-panel{from{height:var(--inactive-panel-height,auto)}to{height:var(--active-panel-height,auto)}}.sidebar-toggle{bottom:61px;height:16px;padding:5px;width:16px;background:#222;cursor:pointer;opacity:.6;position:fixed;z-index:30;right:30px}.sidebar-toggle:hover{opacity:.8}@media (max-width:991px){.sidebar-toggle{right:20px;opacity:.8}}.sidebar-toggle:hover .toggle-line{background:#fc6423}@media (any-hover:hover){body:not(.sidebar-active) .sidebar-toggle:hover :first-child{left:50%;top:2px;transform:rotate(45deg);width:50%}body:not(.sidebar-active) .sidebar-toggle:hover :last-child{left:50%;top:-2px;transform:rotate(-45deg);width:50%}}.sidebar-active .sidebar-toggle :nth-child(2){opacity:0}.sidebar-active .sidebar-toggle :first-child{top:6px;transform:rotate(45deg)}.sidebar-active .sidebar-toggle :last-child{top:-6px;transform:rotate(-45deg)}.post-toc{font-size:.875em}.post-toc ol{list-style:none;margin:0;padding:0 2px 0 10px;text-align:left}.post-toc ol>:last-child{margin-bottom:5px}.post-toc ol>ol{padding-left:0}.post-toc ol a{transition:.2s ease-in-out}.post-toc .nav-item{line-height:1.8;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.post-toc .nav .nav-child{--height:0;height:0;opacity:0;overflow:hidden;transition:.2s ease-in-out;visibility:hidden}.post-toc .nav .active>.nav-child{height:var(--height,auto);opacity:1;visibility:unset}.post-toc .nav .active>a{border-bottom-color:#fc6423;color:#fc6423}.post-toc .nav .active-current>a,.post-toc .nav .active-current>a:hover{color:#fc6423}.footer{color:#999;font-size:.875em;padding:20px 0}.footer.footer-fixed{bottom:0;left:0;position:absolute;right:0}.footer-inner{box-sizing:border-box;text-align:center;display:flex;flex-direction:column;justify-content:center;margin:0 auto;width:calc(100% - 20px)}@media (max-width:767px){.menu-item .badge{float:right;margin-left:0}.footer-inner{width:auto}}@media (min-width:1200px){.footer-inner{width:1160px}}@media (min-width:1600px){.footer-inner{width:73%}}.use-motion .footer{opacity:0}.languages{display:inline-block;font-size:1.125em;position:relative}.languages .lang-select-label span{margin:0 .5em}.languages .lang-select{height:100%;left:0;opacity:0;position:absolute;top:0;width:100%}.with-love{color:red;display:inline-block;margin:0 5px;animation:1.33s ease-in-out infinite icon-animate}@keyframes icon-animate{0%,100%{transform:scale(1)}10%,30%{transform:scale(.9)}20%,40%,50%,60%,70%,80%{transform:scale(1.1)}}@media (max-width:567px){.main-inner{padding:initial!important}.posts-expand .post-header{margin-bottom:10px!important}.post-block{margin-top:initial!important;padding:8px 18px!important}.post-body h1,.post-body h2,.post-body h3,.post-body h4,.post-body h5,.post-body h6{margin:20px 0 8px}.post-body .note h1,.post-body .note h2,.post-body .note h3,.post-body .note h4,.post-body .note h5,.post-body .note h6,.post-body .tabs .tab-content .tab-pane h1,.post-body .tabs .tab-content .tab-pane h2,.post-body .tabs .tab-content .tab-pane h3,.post-body .tabs .tab-content .tab-pane h4,.post-body .tabs .tab-content .tab-pane h5,.post-body .tabs .tab-content .tab-pane h6{margin:0 5px}.post-body>p{margin:0 0 10px}.post-body .note>p,.post-body .tabs .tab-content .tab-pane>p{padding:0 5px}.post-body img,.post-body video{margin-bottom:10px!important}.post-body .note{margin-bottom:10px!important;padding:10px!important}.post-body .note:not(.no-icon){padding-left:35px!important}.post-body .tabs .tab-content .tab-pane{padding:10px 10px 0!important}.post-eof{margin:40px auto 20px!important}.pagination{margin-top:40px}}.back-to-top{font-size:12px;align-items:center;bottom:-100px;color:#fff;display:flex;height:26px;transition:bottom .2s ease-in-out;background:#222;cursor:pointer;opacity:.6;position:fixed;z-index:30;right:30px}.back-to-top span{margin-right:8px;display:none}.back-to-top .fa{text-align:center;width:26px}.back-to-top:hover{opacity:.8;color:#fc6423}.back-to-top.back-to-top-on{bottom:30px}.reading-progress-bar{--progress:0;background:#37c6c0;height:3px;position:fixed;z-index:50;width:var(--progress);left:0;top:0}.rtl.post-body a,.rtl.post-body h1,.rtl.post-body h2,.rtl.post-body h3,.rtl.post-body h4,.rtl.post-body h5,.rtl.post-body h6,.rtl.post-body li,.rtl.post-body ol,.rtl.post-body p,.rtl.post-body ul{direction:rtl;font-family:UKIJ Ekran}.rtl.post-title{font-family:UKIJ Ekran}.post-button{margin-top:40px;text-align:center}.use-motion .collection-header,.use-motion .comments,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{visibility:hidden}.posts-collapse .post-content{margin-bottom:35px;margin-left:35px;position:relative}@media (max-width:767px){.posts-collapse .post-content{margin-left:0;margin-right:0}}.posts-collapse .post-content .collection-title{font-size:1.125em;position:relative}.posts-collapse .post-content .collection-title::before{background:#999;border:1px solid #fff;margin-left:-6px;margin-top:-4px;position:absolute;top:50%;border-radius:50%;content:' ';height:10px;width:10px}.posts-collapse .post-content .collection-year{font-size:1.5em;font-weight:700;margin:60px 0;position:relative}.posts-collapse .post-content .collection-year::before{background:#bbb;margin-left:-4px;margin-top:-4px;position:absolute;top:50%;border-radius:50%;content:' ';height:8px;width:8px}.posts-collapse .post-content .collection-header{display:block;margin-left:20px}.posts-collapse .post-content .collection-header small{color:#bbb;margin-left:5px}.posts-collapse .post-content .post-header{border-bottom:1px dashed #ccc;margin:30px 2px 0;padding-left:15px;position:relative;transition:border .2s ease-in-out}.posts-collapse .post-content .post-header::before{background:#bbb;border:1px solid #fff;left:-6px;position:absolute;top:.75em;transition:background .2s ease-in-out;border-radius:50%;content:' ';height:6px;width:6px}.posts-collapse .post-content .post-header:hover{border-bottom-color:#666}.posts-collapse .post-content .post-header:hover::before{background:#222}.posts-collapse .post-content .post-meta-container{display:inline;font-size:.75em;margin-right:10px}.posts-collapse .post-content .post-title{display:inline}.posts-collapse .post-content .post-title a{border-bottom:0;color:var(--link-color)}.posts-collapse .post-content .post-title .fa-external-link-alt{font-size:.875em;margin-left:5px}.posts-collapse .post-content::before{background:#f5f5f5;content:' ';height:100%;margin-left:-2px;position:absolute;top:1.25em;width:4px}.post-body{font-family:Lato,'PingFang SC','Microsoft YaHei',sans-serif;overflow-wrap:break-word}@media (min-width:1200px){.post-body{font-size:1.125em}}@media (min-width:992px){.post-body{text-align:justify}}.post-body h1 .header-anchor,.post-body h1 .headerlink,.post-body h2 .header-anchor,.post-body h2 .headerlink,.post-body h3 .header-anchor,.post-body h3 .headerlink,.post-body h4 .header-anchor,.post-body h4 .headerlink,.post-body h5 .header-anchor,.post-body h5 .headerlink,.post-body h6 .header-anchor,.post-body h6 .headerlink{border-bottom-style:none;color:inherit;float:right;font-size:.875em;margin-left:10px;opacity:0}.post-body h1 .header-anchor::before,.post-body h1 .headerlink::before,.post-body h2 .header-anchor::before,.post-body h2 .headerlink::before,.post-body h3 .header-anchor::before,.post-body h3 .headerlink::before,.post-body h4 .header-anchor::before,.post-body h4 .headerlink::before,.post-body h5 .header-anchor::before,.post-body h5 .headerlink::before,.post-body h6 .header-anchor::before,.post-body h6 .headerlink::before{content:'\f0c1';font-family:'Font Awesome 6 Free';font-weight:900}.post-body h1:hover .header-anchor,.post-body h1:hover .headerlink,.post-body h2:hover .header-anchor,.post-body h2:hover .headerlink,.post-body h3:hover .header-anchor,.post-body h3:hover .headerlink,.post-body h4:hover .header-anchor,.post-body h4:hover .headerlink,.post-body h5:hover .header-anchor,.post-body h5:hover .headerlink,.post-body h6:hover .header-anchor,.post-body h6:hover .headerlink{opacity:.5}.post-body h1:hover .header-anchor:hover,.post-body h1:hover .headerlink:hover,.post-body h2:hover .header-anchor:hover,.post-body h2:hover .headerlink:hover,.post-body h3:hover .header-anchor:hover,.post-body h3:hover .headerlink:hover,.post-body h4:hover .header-anchor:hover,.post-body h4:hover .headerlink:hover,.post-body h5:hover .header-anchor:hover,.post-body h5:hover .headerlink:hover,.post-body h6:hover .header-anchor:hover,.post-body h6:hover .headerlink:hover{opacity:1}.post-body .exturl .fa{font-size:.875em;margin-left:4px}.post-body .fancybox+figcaption,.post-body .image-caption,.post-body img+figcaption{color:#999;font-size:.875em;font-weight:700;line-height:1;margin:-15px auto 15px;text-align:center}.post-body embed,.post-body iframe,.post-body img,.post-body video{margin-bottom:20px}.post-body .video-container{height:0;margin-bottom:20px;overflow:hidden;padding-top:75%;position:relative;width:100%}.post-body .video-container embed,.post-body .video-container iframe,.post-body .video-container object{height:100%;left:0;margin:0;position:absolute;top:0;width:100%}.post-gallery{display:flex;min-height:200px}.post-gallery .post-gallery-image{flex:1}.post-gallery .post-gallery-image:not(:first-child){clip-path:polygon(40px 0,100% 0,100% 100%,0 100%);margin-left:-20px}.post-gallery .post-gallery-image:not(:last-child){margin-right:-20px}.post-gallery .post-gallery-image img{height:100%;object-fit:cover;opacity:1;width:100%}.posts-expand .post-gallery{margin-bottom:60px}.posts-collapse .post-gallery{margin:15px 0}.posts-expand .post-header{font-size:1.125em;margin-bottom:60px;text-align:center}.posts-expand .post-title{font-size:1.5em;font-weight:400;margin:initial;overflow-wrap:break-word}.posts-expand .post-title .post-edit-link{border-bottom:0;color:#bbb;float:right;font-size:1.25em;margin-left:-1.2em;transition:color .2s ease-in}@media (max-width:567px){.posts-expand .post-title .post-edit-link{margin-left:initial}}.posts-expand .post-title .post-edit-link:hover{color:#fc6423}.posts-expand .post-title-link{border-bottom:0;color:var(--link-color);display:inline-block;position:relative}.posts-expand .post-title-link::before{background:var(--link-color);bottom:0;content:'';height:2px;left:0;position:absolute;transform:scaleX(0);transition:transform .2s ease-in-out;width:100%}.posts-expand .post-title-link:hover::before{transform:scaleX(1)}.posts-expand .post-title-link .fa-external-link-alt{font-size:.875em;margin-left:5px}.post-sticky-flag{display:inline-block;margin-right:8px;transform:rotate(30deg)}.posts-expand .post-meta-container{color:#999;font-family:Lato,'PingFang SC','Microsoft YaHei',sans-serif;font-size:.75em;margin-top:3px}.posts-expand .post-meta-container .post-description{font-size:.875em;margin-top:2px}.posts-expand .post-meta-container time{border-bottom:1px dashed #999}.post-meta{display:flex;flex-wrap:wrap;justify-content:center}:not(.post-meta-break)+.post-meta-item::before{content:'|';margin:0 .5em}.post-meta-item-icon{margin-right:3px}@media (max-width:991px){.back-to-top{right:20px;opacity:.8}.post-body{text-align:justify}.post-meta-item-text{display:none}}.post-meta-break{flex-basis:100%;height:0}.post-nav{border-top:1px solid #eee;display:flex;gap:30px;justify-content:space-between;margin-top:1em;padding:10px 5px 0}.post-nav-item{flex:1}.post-nav-item a{border-bottom:0;display:block;font-size:.875em;line-height:1.6}.post-nav-item a:active{top:2px}.post-nav-item .fa{font-size:.75em}.post-nav-item:first-child .fa{margin-right:5px}.post-nav-item:last-child{text-align:right}.post-nav-item:last-child .fa{margin-left:5px}.post-footer{display:flex;flex-direction:column;justify-content:center}.post-eof{background:#ccc;height:1px;margin:80px auto 60px;width:8%}.post-block:last-of-type .post-eof{display:none}.post-tags{margin-top:40px;text-align:center}.post-tags a{display:inline-block;font-size:.8125em}.post-tags a:not(:last-child){margin-right:10px}.social-like{border-top:1px solid #eee;font-size:.875em;margin-top:1em;padding-top:1em;text-align:center}.reward-container{margin:1em 0 0;padding:1em 0;text-align:center}.reward-container button{background:0 0;color:#fc6423;cursor:pointer;line-height:2;padding:0 15px;border:2px solid #fc6423;border-radius:2px;outline:0;transition:.2s ease-in-out;vertical-align:text-top}.reward-container button:hover{background:#fc6423;color:#fff}.post-reward{display:none;padding-top:20px}.post-reward.active{display:block}.post-reward div{display:inline-block}.post-reward div span{display:block}.post-reward img{display:inline-block;margin:.8em 2em 0;max-width:100%;width:180px}@keyframes next-roll{from{transform:rotateZ(30deg)}to{transform:rotateZ(-30deg)}}.category-all-page .category-all-title{text-align:center}.category-all-page .category-all{margin-top:20px}.category-all-page .category-list{list-style:none;margin:0;padding:0}.category-all-page .category-list-item{margin:5px 10px}.category-all-page .category-list-count{color:#bbb}.category-all-page .category-list-count::before{content:' ('}.category-all-page .category-list-count::after{content:') '}.category-all-page .category-list-child{padding-left:10px}.event-list hr{background:#222;margin:20px 0 45px}.event-list hr::after{background:#222;color:#fff;content:'NOW';display:inline-block;font-weight:700;padding:0 5px}.event-list .event{--event-background:#222;--event-foreground:#bbb;--event-title:#fff;background:var(--event-background);padding:15px}.event-list .event .event-summary{border-bottom:0;color:var(--event-title);margin:0;padding:0 0 0 35px;position:relative}.event-list .event .event-summary::before{animation:1s ease-in-out infinite alternate dot-flash;background:var(--event-title);left:0;margin-top:-6px;position:absolute;top:50%;border-radius:50%;content:' ';height:12px;width:12px}.event-list .event:nth-of-type(odd) .event-summary::before{animation-delay:.5s}.event-list .event:not(:last-child){margin-bottom:20px}.event-list .event .event-relative-time{color:var(--event-foreground);display:inline-block;font-size:12px;font-weight:400;padding-left:12px}.event-list .event .event-details{color:var(--event-foreground);display:block;line-height:18px;padding:6px 0 6px 35px}.event-list .event .event-details::before{color:var(--event-foreground);display:inline-block;margin-right:9px;width:14px;font-family:'Font Awesome 6 Free';font-weight:900}.event-list .event .event-details.event-location::before{content:'\f041'}.event-list .event .event-details.event-duration::before{content:'\f017'}.event-list .event .event-details.event-description::before{content:'\f024'}.event-list .event-past{--event-background:#f5f5f5;--event-foreground:#999;--event-title:#222}@keyframes dot-flash{from{opacity:1;transform:scale(1)}to{opacity:0;transform:scale(.8)}}ul.breadcrumb{font-size:.75em;list-style:none;margin:1em 0;padding:0 2em;text-align:center}ul.breadcrumb li{display:inline}ul.breadcrumb li:not(:first-child)::before{content:'/\00a0';font-weight:400;padding:.5em}ul.breadcrumb li:last-child{font-weight:700}.tag-cloud{text-align:center}.tag-cloud a{display:inline-block;margin:10px}.tag-cloud-0{border-bottom-color:#aaa;color:#aaa}.tag-cloud-1{border-bottom-color:#9a9a9a;color:#9a9a9a}.tag-cloud-2{border-bottom-color:#8b8b8b;color:#8b8b8b}.tag-cloud-3{border-bottom-color:#7c7c7c;color:#7c7c7c}.tag-cloud-4{border-bottom-color:#6c6c6c;color:#6c6c6c}.tag-cloud-5{border-bottom-color:#5d5d5d;color:#5d5d5d}.tag-cloud-6{border-bottom-color:#4e4e4e;color:#4e4e4e}.tag-cloud-7{border-bottom-color:#3e3e3e;color:#3e3e3e}.tag-cloud-8{border-bottom-color:#2f2f2f;color:#2f2f2f}.tag-cloud-9{border-bottom-color:#202020;color:#202020}.tag-cloud-10{border-bottom-color:#111;color:#111}.search-active{overflow:hidden}.search-pop-overlay{background:rgba(0,0,0,0);display:flex;height:100%;left:0;position:fixed;top:0;transition:visibility .4s,background .4s;visibility:hidden;width:100%;z-index:40}.search-active .search-pop-overlay{background:rgba(0,0,0,.3);visibility:visible}.search-popup{background:var(--card-bg-color);border-radius:5px;height:80%;margin:auto;transform:scale(0);transition:transform .4s;width:700px}.search-active .search-popup{transform:scale(1)}@media (max-width:767px){.search-popup{border-radius:0;height:100%;width:100%}}.search-popup .popup-btn-close,.search-popup .search-icon{color:#999;font-size:18px;padding:0 10px}.search-popup .popup-btn-close{cursor:pointer}.search-popup .popup-btn-close:hover .fa{color:#222}.search-popup .search-header{background:#eee;border-top-left-radius:5px;border-top-right-radius:5px;display:flex;padding:5px}@media (prefers-color-scheme:dark){.tag-cloud-0{border-bottom-color:#555;color:#555}.tag-cloud-1{border-bottom-color:#646464;color:#646464}.tag-cloud-2{border-bottom-color:#737373;color:#737373}.tag-cloud-3{border-bottom-color:#828282;color:#828282}.tag-cloud-4{border-bottom-color:#929292;color:#929292}.tag-cloud-5{border-bottom-color:#a1a1a1;color:#a1a1a1}.tag-cloud-6{border-bottom-color:#b0b0b0;color:#b0b0b0}.tag-cloud-7{border-bottom-color:silver;color:silver}.tag-cloud-8{border-bottom-color:#cfcfcf;color:#cfcfcf}.tag-cloud-9{border-bottom-color:#dedede;color:#dedede}.tag-cloud-10{border-bottom-color:#eee;color:#eee}.search-popup .search-header{background:#666}}.search-popup input.search-input{background:0 0;border:0;outline:0;width:100%}.search-popup input.search-input::-webkit-search-cancel-button{display:none}.search-popup .search-result-container{height:calc(100% - 55px);overflow:auto;padding:5px 25px}.search-popup .search-result-container hr{margin:5px 0 10px}.search-popup .search-result-container hr:first-child{display:none}.search-popup .search-result-list{margin:0 5px;padding:0;width:100%}.search-popup a.search-result-title{font-weight:700}.search-popup p.search-result{border-bottom:1px dashed #ccc;padding:5px 0}.search-popup .search-input-container{flex-grow:1;padding:2px}.search-popup .no-result{display:flex}.search-popup .search-result-icon{color:#ccc;margin:auto}mark.search-keyword{background:0 0;border-bottom:1px dashed #ff2a2a;color:#ff2a2a;font-weight:700}.has-jax,mjx-container[jax=CHTML][display=true]{overflow:auto hidden}mjx-container[display=true]+br{display:none}.use-motion .animated{animation-fill-mode:none;visibility:inherit}.use-motion .sidebar .animated{animation-fill-mode:both}.header{background:var(--content-bg-color);border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12)}.main{align-items:stretch;display:flex;justify-content:space-between;margin:0 auto;width:calc(100% - 20px)}@media (max-width:767px){.main{width:auto}}@media (min-width:1200px){.main{width:1160px}}@media (min-width:1600px){.main{width:73%}}@media (max-width:991px){.header{border-radius:initial}.main{display:block;width:auto}}.main-inner{border-radius:initial;box-sizing:border-box;width:calc(100% - 252px)}.footer-inner{padding-left:252px}@media (max-width:991px){.main-inner{border-radius:initial;width:100%}.footer-inner{padding-left:0;padding-right:0;width:auto}}.column{width:240px}.site-brand-container{background:var(--theme-color)}.site-meta{padding:20px 0}.site-nav-right .toggle,.site-nav-toggle .toggle{color:#fff}.site-nav-right .toggle .toggle-line,.site-nav-toggle .toggle .toggle-line{background:#fff}@media (min-width:768px) and (max-width:991px){.site-nav-right,.site-nav-toggle{display:flex;flex-direction:column;justify-content:center}.site-nav{--scroll-height:0;height:0;overflow:hidden;transition:height .2s ease-in-out,visibility .2s ease-in-out;visibility:hidden}body:not(.site-nav-on) .site-nav .animated{animation:none}body.site-nav-on .site-nav{height:var(--scroll-height);visibility:unset}}.menu .menu-item{display:block;margin:0}.menu .menu-item a{padding:5px 20px;position:relative;text-align:left;transition-property:background-color}.menu .menu-item .badge{background:#ccc;border-radius:10px;color:var(--content-bg-color);float:right;padding:2px 5px;text-shadow:1px 1px 0 rgba(0,0,0,.1)}.sub-menu{margin:0;padding:6px 0}.sub-menu .menu-item{display:inline-block}.sub-menu .menu-item a{background:0 0;margin:5px 10px;padding:initial}.sub-menu .menu-item a:hover{background:0 0;color:#fc6423}.sub-menu .menu-item-active{border-bottom-color:#fc6423;color:#fc6423}.sub-menu .menu-item-active:hover{border-bottom-color:#fc6423}.sidebar{position:-webkit-sticky;position:sticky;top:12px}@media (max-width:991px){.column{width:auto}.site-nav-on .site-brand-container{box-shadow:0 0 16px rgba(0,0,0,.5)}.menu .menu-item.menu-item-search,.sidebar{display:none}}.sidebar-inner{background:var(--content-bg-color);border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12),0 -1px .5px 0 rgba(0,0,0,.09);box-sizing:border-box;color:var(--text-color);margin-top:12px;max-height:calc(100vh - 24px)}.site-state-item{padding:0 10px}.sidebar .sidebar-button{border-bottom:1px dotted #ccc;border-top:1px dotted #ccc}.sidebar .sidebar-button button{border:0;color:#fc6423;display:block;width:100%}.sidebar .sidebar-button button:hover{background:0 0;border:0;color:#e34603}.links-of-author{display:flex;flex-wrap:wrap;justify-content:center}.links-of-author-item{margin:5px 0 0}.links-of-author-item a{box-sizing:border-box;max-width:100%;overflow:hidden;padding:0 5px;text-overflow:ellipsis;white-space:nowrap;border-bottom:0;border-radius:4px;display:block}.links-of-author-item a:hover{background:var(--body-bg-color)}.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .post-block,.main-inner .sub-menu,.main-inner .tabs-comment,.main-inner>.comments{background:var(--content-bg-color);border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12)}.main-inner .post-block:not(:first-child):not(:first-child){border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12),0 -1px .5px 0 rgba(0,0,0,.09);margin-top:12px}@media (min-width:768px) and (max-width:991px){.main-inner .post-block:not(:first-child):not(:first-child){margin-top:10px}}@media (max-width:767px){.main-inner .post-block:not(:first-child):not(:first-child){margin-top:8px}}.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .tabs-comment,.main-inner>.comments{border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12),0 -1px .5px 0 rgba(0,0,0,.09);margin-top:12px}@media (min-width:768px) and (max-width:991px){.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .tabs-comment,.main-inner>.comments{margin-top:10px}}@media (max-width:767px){.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .tabs-comment,.main-inner>.comments{margin-top:8px}}.comments,.post-block{padding:40px}.post-eof{display:none}.pagination{border-top:initial;padding:10px 0}.post-body h1,.post-body h2{border-bottom:1px solid #eee}.post-body h3{border-bottom:1px dotted #eee}@media (min-width:768px) and (max-width:991px){.main-inner{padding:10px}.posts-expand .post-button{margin-top:20px}.post-block{padding:20px}.comments{padding:10px 20px}}@media (max-width:767px){.main-inner{padding:8px}.posts-expand .post-button{margin:12px 0}.post-block{padding:12px}.comments{padding:10px 12px}} \ No newline at end of file + */.hljs{display:block;overflow-x:auto;padding:.5em;color:#fff;background:#1c1b1b}.hljs-comment{color:#999}.hljs-attr,.hljs-doctag,.hljs-keyword,.hljs-meta,.hljs-meta-keyword,.hljs-section,.hljs-selector-class,.hljs-selector-pseudo,.hljs-selector-tag{color:#88aece}.hljs-attribute{color:v#c59bc1}.hljs-built_in,.hljs-literal,.hljs-name,.hljs-number,.hljs-quote,.hljs-selector-id,.hljs-template-tag,.hljs-title,.hljs-type{color:#f08d49}.hljs-link,.hljs-meta-string,.hljs-regexp,.hljs-selector-attr,.hljs-string,.hljs-symbol,.hljs-template-variable,.hljs-variable{color:#b5bd68}.hljs-bullet,.hljs-code{color:#ccc}.hljs-deletion{color:#de7176}.hljs-addition{color:#76c490}.hljs-emphasis{font-style:italic}.hljs-strong{font-weight:700}}.highlight:hover .copy-btn,pre:hover .copy-btn{opacity:1}figure.highlight .table-container{position:relative}.copy-btn{color:#333;cursor:pointer;line-height:1.6;opacity:0;padding:2px 6px;position:absolute;transition:opacity .2s ease-in-out;background-color:#eee;background-image:linear-gradient(#fcfcfc,#eee);border:1px solid #d5d5d5;border-radius:3px;font-size:.8125em;right:4px;top:8px}code,figure.highlight,kbd,pre{background:var(--highlight-background);color:var(--highlight-foreground)}figure.highlight,pre{line-height:1.6;margin:0 auto 20px}figure.highlight figcaption,pre .caption,pre figcaption{background:var(--highlight-gutter-background);color:var(--highlight-foreground);display:flow-root;font-size:.875em;line-height:1.2;padding:.5em}figure.highlight figcaption a,pre .caption a,pre figcaption a{color:var(--highlight-foreground);float:right}figure.highlight figcaption a:hover,pre .caption a:hover,pre figcaption a:hover{border-bottom-color:var(--highlight-foreground)}code,pre{font-family:consolas,Menlo,monospace,'PingFang SC','Microsoft YaHei'}code{border-radius:3px;font-size:.875em;padding:2px 4px;overflow-wrap:break-word}kbd{border:2px solid #ccc;border-radius:.2em;box-shadow:.1em .1em .2em rgba(0,0,0,.1);font-family:inherit;padding:.1em .3em;white-space:nowrap}figure.highlight{overflow:auto;position:relative}figure.highlight pre{border:0;margin:0;padding:10px 0}figure.highlight table{border:0;margin:0;width:auto}figure.highlight td{border:0;padding:0}figure.highlight .gutter{-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;user-select:none}figure.highlight .gutter pre{background:var(--highlight-gutter-background);color:var(--highlight-gutter-foreground);padding-left:10px;padding-right:10px;text-align:right}figure.highlight .code pre{padding-left:10px;width:100%}figure.highlight .marked{background:rgba(0,0,0,.3)}pre .caption,pre figcaption{margin-bottom:10px}.gist table{width:auto}.gist table td{border:0}pre code{background:0 0;padding:0;text-shadow:none}.blockquote-center{border-left:0;margin:40px 0;padding:0;position:relative;text-align:center}.blockquote-center::after,.blockquote-center::before{left:0;line-height:1;opacity:.6;position:absolute;width:100%}.blockquote-center::before{border-top:1px solid #ccc;text-align:left;top:-20px;content:'\f10d';font-family:'Font Awesome 6 Free';font-weight:900}.blockquote-center::after{border-bottom:1px solid #ccc;bottom:-20px;text-align:right;content:'\f10e';font-family:'Font Awesome 6 Free';font-weight:900}.blockquote-center div,.blockquote-center p{text-align:center}.group-picture{margin-bottom:20px}.group-picture .group-picture-row{display:flex;gap:3px;margin-bottom:3px}.group-picture .group-picture-column{flex:1}.group-picture .group-picture-column img{height:100%;margin:0;object-fit:cover;width:100%}.post-body .label{color:#555;padding:0 2px}.post-body .label.default{background:#f0f0f0}.post-body .label.primary{background:#efe6f7}.post-body .label.info{background:#e5f2f8}.post-body .label.success{background:#e7f4e9}.post-body .label.warning{background:#fcf6e1}.post-body .label.danger{background:#fae8eb}.post-body .link-grid{display:grid;grid-gap:1.5rem;gap:1.5rem;grid-template-columns:1fr 1fr;margin-bottom:20px;padding:1rem}.post-body .link-grid .link-grid-container{border:solid #ddd;box-shadow:1rem 1rem .5rem rgba(0,0,0,.5);min-height:5rem;min-width:0;padding:.5rem;position:relative;transition:background .3s}.post-body .link-grid .link-grid-container:hover{animation:.5s next-shake;background:var(--card-bg-color)}.post-body .link-grid .link-grid-container:active{box-shadow:.5rem .5rem .25rem rgba(0,0,0,.5);transform:translate(.2rem,.2rem)}.post-body .link-grid .link-grid-container .link-grid-image{border:1px solid #ddd;border-radius:50%;box-sizing:border-box;height:5rem;padding:3px;position:absolute;width:5rem}.post-body .link-grid .link-grid-container p{margin:0 1rem 0 6rem}.post-body .link-grid .link-grid-container p:first-of-type{font-size:1.2em}.post-body .link-grid .link-grid-container p:last-of-type{font-size:.8em;line-height:1.3rem;opacity:.7}.post-body .link-grid .link-grid-container a{border:0;height:100%;left:0;position:absolute;top:0;width:100%}@keyframes next-shake{0%{transform:translate(1pt,1pt) rotate(0)}10%{transform:translate(-1pt,-2pt) rotate(-1deg)}20%{transform:translate(-3pt,0) rotate(1deg)}30%{transform:translate(3pt,2pt) rotate(0)}40%{transform:translate(1pt,-1pt) rotate(1deg)}50%{transform:translate(-1pt,2pt) rotate(-1deg)}60%{transform:translate(-3pt,1pt) rotate(0)}70%{transform:translate(3pt,1pt) rotate(-1deg)}80%{transform:translate(-1pt,-1pt) rotate(1deg)}90%{transform:translate(1pt,2pt) rotate(0)}100%{transform:translate(1pt,-2pt) rotate(-1deg)}}.mermaid{margin-bottom:20px;text-align:center}.post-body .note{border-radius:3px;margin-bottom:20px;padding:1em;position:relative;background:#f5f5f5;border:1px solid transparent}.post-body .note summary{cursor:pointer;outline:0}.post-body .note summary p{display:inline}.post-body .note h2,.post-body .note h3,.post-body .note h4,.post-body .note h5,.post-body .note h6{border-bottom:initial;margin:0;padding-top:0}.post-body .note :first-child{margin-top:0}.post-body .note :last-child{margin-bottom:0}.post-body .note:not(.no-icon){padding-left:2.5em}.post-body .note:not(.no-icon)::before{font-size:1.5em;left:.3em;position:absolute;top:calc(50% - 1em)}.post-body .note.default{background:#f3f3f3;border-color:#e1e1e1;color:#666}.post-body .note.default a:not(.btn){border-bottom-color:#666;color:#666}.post-body .note.default a:not(.btn):hover{border-bottom-color:#454545;color:#454545}.post-body .note.default:not(.no-icon)::before{content:'\f0a9';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.primary{background:#f3daff;border-color:#e1c2ff;color:#6f42c1}.post-body .note.primary a:not(.btn){border-bottom-color:#6f42c1;color:#6f42c1}.post-body .note.primary a:not(.btn):hover{border-bottom-color:#453298;color:#453298}.post-body .note.primary:not(.no-icon)::before{content:'\f055';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.info{background:#d9edf7;border-color:#b3e5ef;color:#31708f}.post-body .note.info a:not(.btn){border-bottom-color:#31708f;color:#31708f}.post-body .note.info a:not(.btn):hover{border-bottom-color:#215761;color:#215761}.post-body .note.info:not(.no-icon)::before{content:'\f05a';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.success{background:#dff0d8;border-color:#d0e6be;color:#3c763d}.post-body .note.success a:not(.btn){border-bottom-color:#3c763d;color:#3c763d}.post-body .note.success a:not(.btn):hover{border-bottom-color:#32562c;color:#32562c}.post-body .note.success:not(.no-icon)::before{content:'\f058';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.warning{background:#fcf4e3;border-color:#fae4cd;color:#8a6d3b}.post-body .note.warning a:not(.btn){border-bottom-color:#8a6d3b;color:#8a6d3b}.post-body .note.warning a:not(.btn):hover{border-bottom-color:#714f30;color:#714f30}.post-body .note.warning:not(.no-icon)::before{content:'\f06a';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .note.danger{background:#f2dfdf;border-color:#ebcdd2;color:#a94442}.post-body .note.danger a:not(.btn){border-bottom-color:#a94442;color:#a94442}.post-body .note.danger a:not(.btn):hover{border-bottom-color:#84333f;color:#84333f}.post-body .note.danger:not(.no-icon)::before{content:'\f056';font-family:'Font Awesome 6 Free';font-weight:900}.post-body .tabs{margin-bottom:20px}.post-body .tabs,.tabs-comment{padding-top:10px}.post-body .tabs ul.nav-tabs,.tabs-comment ul.nav-tabs{background:var(--content-bg-color);display:flex;display:flex;flex-wrap:wrap;justify-content:center;margin:0;padding:0;position:-webkit-sticky;position:sticky;top:0;z-index:5}.post-body .tabs ul.nav-tabs li.tab,.tabs-comment ul.nav-tabs li.tab{border-bottom:1px solid #ddd;border-left:1px solid transparent;border-right:1px solid transparent;border-radius:0;border-top:3px solid transparent;flex-grow:1;list-style-type:none}@media (max-width:413px){.post-body .tabs ul.nav-tabs,.tabs-comment ul.nav-tabs{display:block;margin-bottom:5px}.post-body .tabs ul.nav-tabs li.tab,.tabs-comment ul.nav-tabs li.tab{border-bottom:1px solid transparent;border-left:3px solid transparent;border-right:1px solid transparent;border-top:1px solid transparent;border-radius:0}}.post-body .tabs ul.nav-tabs li.tab a,.tabs-comment ul.nav-tabs li.tab a{border-bottom:initial;display:block;line-height:1.8;padding:.25em .75em;text-align:center;transition:.2s ease-out}.post-body .tabs ul.nav-tabs li.tab a i,.tabs-comment ul.nav-tabs li.tab a i{width:1.285714285714286em}.post-body .tabs ul.nav-tabs li.tab.active,.tabs-comment ul.nav-tabs li.tab.active{border-color:#fc6423 #ddd transparent}@media (max-width:413px){.post-body .tabs ul.nav-tabs li.tab.active,.tabs-comment ul.nav-tabs li.tab.active{border-color:#ddd #ddd #ddd #fc6423}}.post-body .tabs ul.nav-tabs li.tab.active a,.tabs-comment ul.nav-tabs li.tab.active a{cursor:default}.post-body .tabs .tab-content,.tabs-comment .tab-content{border:1px solid #ddd;border-radius:0;border-top-color:transparent}@media (max-width:413px){.post-body .tabs .tab-content,.tabs-comment .tab-content{border-radius:0;border-top-color:#ddd}}.post-body .tabs .tab-content .tab-pane,.tabs-comment .tab-content .tab-pane{padding:20px 20px 0}.post-body .tabs .tab-content .tab-pane:not(.active),.tabs-comment .tab-content .tab-pane:not(.active){display:none}.pagination .next,.pagination .page-number,.pagination .prev,.pagination .space{display:inline-block;margin:-1px 10px 0;padding:0 10px}.pagination .page-number.current{background:#ccc;border-color:#ccc;color:var(--content-bg-color)}.pagination{border-top:1px solid #eee;margin:120px 0 0;text-align:center}.pagination .next,.pagination .page-number,.pagination .prev{border-bottom:0;border-top:1px solid #eee;transition:border-color .2s ease-in-out}.pagination .next:hover,.pagination .page-number:hover,.pagination .prev:hover{border-top-color:var(--link-hover-color)}@media (max-width:767px){.post-body .link-grid{grid-template-columns:1fr}.pagination .next,.pagination .page-number,.pagination .prev,.pagination .space{margin:0 5px}.pagination{border-top:0}.pagination .next,.pagination .page-number,.pagination .prev{border-bottom:1px solid #eee;border-top:0}.pagination .next:hover,.pagination .page-number:hover,.pagination .prev:hover{border-bottom-color:var(--link-hover-color)}.site-meta{text-align:center}}.pagination .space{margin:0;padding:0}.comments{margin-top:60px;overflow:hidden}.comment-button-group{display:flex;display:flex;flex-wrap:wrap;justify-content:center;justify-content:center;margin:1em 0}.comment-button-group .comment-button{margin:.1em .2em}.comment-button-group .comment-button.active{background:var(--btn-default-hover-bg);border-color:var(--btn-default-hover-border-color);color:var(--btn-default-hover-color)}.comment-position{display:none}.comment-position.active{display:block}.tabs-comment{margin-top:4em;padding-top:0}.tabs-comment .comments{margin-top:0;padding-top:0}.headband{background:var(--theme-color);height:3px}@media (max-width:991px){.headband{display:none}}.site-brand-container{display:flex;flex-shrink:0;padding:0 10px}.use-motion .column,.use-motion .site-brand-container .toggle{opacity:0}.site-meta{flex-grow:1;text-align:center}.custom-logo-image{margin-top:20px}@media (max-width:991px){.custom-logo-image{display:none}}.brand{border-bottom:0;color:var(--brand-color);display:inline-block;padding:0}.brand:hover{color:var(--brand-hover-color)}.site-title{font-family:Lato,'PingFang SC','Microsoft YaHei',sans-serif;font-size:1.375em;font-weight:400;line-height:1.5;margin:0}.site-subtitle{color:#ddd;font-size:.8125em;margin:10px 10px 0}.use-motion .custom-logo-image,.use-motion .site-subtitle,.use-motion .site-title{opacity:0;position:relative;top:-10px}.site-nav-right,.site-nav-toggle{display:none}.site-nav-right .toggle,.site-nav-toggle .toggle{color:var(--text-color);padding:10px;width:22px}.site-nav-right .toggle .toggle-line,.site-nav-toggle .toggle .toggle-line{background:var(--text-color);border-radius:1px}@media (max-width:767px){.site-nav-right,.site-nav-toggle{display:flex;flex-direction:column;justify-content:center}.site-nav{--scroll-height:0;height:0;overflow:hidden;transition:height .2s ease-in-out,visibility .2s ease-in-out;visibility:hidden}body:not(.site-nav-on) .site-nav .animated{animation:none}body.site-nav-on .site-nav{height:var(--scroll-height);visibility:unset}}.menu{margin:0;padding:1em 0;text-align:center}.menu-item{display:inline-block;list-style:none;margin:0 10px}@media (max-width:767px){.menu-item{display:block;margin-top:10px}.menu-item.menu-item-search{display:none}}.menu-item a{border-bottom:0;display:block;font-size:.8125em;transition:border-color .2s ease-in-out}.menu-item a.menu-item-active,.menu-item a:hover{background:var(--menu-item-bg-color)}.menu-item .fa,.menu-item .fab,.menu-item .far,.menu-item .fas{margin-right:8px}.menu-item .badge{display:inline-block;font-weight:700;line-height:1;margin-left:.35em;margin-top:.35em;text-align:center;white-space:nowrap}.use-motion .menu-item{visibility:hidden}.book-mark-link{border-bottom:0;position:fixed;top:-10px;transition:top .3s;right:30px}@media (max-width:991px){.book-mark-link{right:20px;display:none}}.book-mark-link::before{color:#222;font-size:32px;line-height:1;content:'\f02e';font-family:'Font Awesome 6 Free';font-weight:900}.book-mark-link-fixed,.book-mark-link:hover{top:-2px}.sidebar-inner{color:#999;padding:18px 10px;text-align:center;display:flex;flex-direction:column;justify-content:center}.cc-license .cc-opacity{border-bottom:0;opacity:.7}.cc-license .cc-opacity:hover{opacity:.9}.cc-license img{display:inline-block}.site-author-image{border:1px solid #eee;max-width:120px;padding:2px}.site-author-name{color:var(--text-color);font-weight:600;margin:0}.site-description{color:#999;font-size:.8125em;margin-top:0}.links-of-author a{font-size:.8125em}.sidebar .sidebar-button:not(:first-child){margin-top:15px}.sidebar .sidebar-button button{background:0 0;cursor:pointer;line-height:2;padding:0 15px;border-radius:4px}.sidebar .sidebar-button button .fa,.sidebar .sidebar-button button .fab,.sidebar .sidebar-button button .far,.sidebar .sidebar-button button .fas{margin-right:5px}.links-of-blogroll{font-size:.8125em}.links-of-blogroll-title{font-size:.875em;font-weight:600}.links-of-blogroll-list{list-style:none;margin:0;padding:0}.sidebar-nav{font-size:.875em;height:0;margin:0;overflow:hidden;padding-left:0;pointer-events:none;transition:height .2s ease-in-out,visibility .2s ease-in-out;visibility:hidden}.sidebar-nav-active .sidebar-nav{height:calc(2em + 1px);pointer-events:unset;visibility:unset}.sidebar-nav li{border-bottom:1px solid transparent;color:var(--text-color);cursor:pointer;display:inline-block;transition:border-bottom-color .2s ease-in-out,color .2s ease-in-out}.sidebar-nav li.sidebar-nav-overview{margin-left:10px}.sidebar-nav li:hover{color:#fc6423}.sidebar-overview-active .sidebar-nav-overview,.sidebar-toc-active .sidebar-nav-toc{border-bottom-color:#fc6423;color:#fc6423;transition-delay:0.2s}.sidebar-overview-active .sidebar-nav-overview:hover,.sidebar-toc-active .sidebar-nav-toc:hover{color:#fc6423}.sidebar-panel-container{align-items:start;display:grid;flex:1;overflow-x:hidden;overflow-y:auto;padding-top:0;transition:padding-top .2s ease-in-out}.sidebar-nav-active .sidebar-panel-container{padding-top:20px}.sidebar-panel{animation:.2s ease-in-out deactivate-sidebar-panel;grid-area:1/1;height:0;opacity:0;overflow:hidden;pointer-events:none;transform:translateY(0);transition:.2s ease-in-out;transition-property:opacity,transform,visibility;visibility:hidden}.sidebar-nav-active .sidebar-panel,.sidebar-overview-active .sidebar-panel.post-toc-wrap{transform:translateY(-20px)}.sidebar-overview-active:not(.sidebar-nav-active) .sidebar-panel.post-toc-wrap{transition-delay:0s,0.2s,0s}.sidebar-overview-active .sidebar-panel.site-overview-wrap,.sidebar-toc-active .sidebar-panel.post-toc-wrap{animation-name:activate-sidebar-panel;height:auto;opacity:1;pointer-events:unset;transform:translateY(0);transition-delay:0.2s,0.2s,0s;visibility:unset}.sidebar-panel.site-overview-wrap{display:flex;flex-direction:column;justify-content:center;gap:10px;justify-content:flex-start}@keyframes deactivate-sidebar-panel{from{height:var(--inactive-panel-height,0)}to{height:var(--active-panel-height,0)}}@keyframes activate-sidebar-panel{from{height:var(--inactive-panel-height,auto)}to{height:var(--active-panel-height,auto)}}.sidebar-toggle{bottom:61px;height:16px;padding:5px;width:16px;background:#222;cursor:pointer;opacity:.6;position:fixed;z-index:30;right:30px}.sidebar-toggle:hover{opacity:.8}@media (max-width:991px){.sidebar-toggle{right:20px;opacity:.8}}.sidebar-toggle:hover .toggle-line{background:#fc6423}@media (any-hover:hover){body:not(.sidebar-active) .sidebar-toggle:hover :first-child{left:50%;top:2px;transform:rotate(45deg);width:50%}body:not(.sidebar-active) .sidebar-toggle:hover :last-child{left:50%;top:-2px;transform:rotate(-45deg);width:50%}}.sidebar-active .sidebar-toggle :nth-child(2){opacity:0}.sidebar-active .sidebar-toggle :first-child{top:6px;transform:rotate(45deg)}.sidebar-active .sidebar-toggle :last-child{top:-6px;transform:rotate(-45deg)}.post-toc{font-size:.875em}.post-toc ol{list-style:none;margin:0;padding:0 2px 0 10px;text-align:left}.post-toc ol>:last-child{margin-bottom:5px}.post-toc ol>ol{padding-left:0}.post-toc ol a{transition:.2s ease-in-out}.post-toc .nav-item{line-height:1.8;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.post-toc .nav .nav-child{--height:0;height:0;opacity:0;overflow:hidden;transition:.2s ease-in-out;visibility:hidden}.post-toc .nav .active>.nav-child{height:var(--height,auto);opacity:1;visibility:unset}.post-toc .nav .active>a{border-bottom-color:#fc6423;color:#fc6423}.post-toc .nav .active-current>a,.post-toc .nav .active-current>a:hover{color:#fc6423}.footer{color:#999;font-size:.875em;padding:20px 0;transition:left .2s ease-in-out,right .2s ease-in-out}.footer.footer-fixed{bottom:0;left:0;position:absolute;right:0}.footer-inner{box-sizing:border-box;text-align:center;display:flex;flex-direction:column;justify-content:center;margin:0 auto;width:calc(100% - 20px)}@media (max-width:767px){.menu-item .badge{float:right;margin-left:0}.footer-inner{width:auto}}@media (min-width:1200px){.footer-inner{width:1160px}}@media (min-width:1600px){.footer-inner{width:73%}}.use-motion .footer{opacity:0}.languages{display:inline-block;font-size:1.125em;position:relative}.languages .lang-select-label span{margin:0 .5em}.languages .lang-select{height:100%;left:0;opacity:0;position:absolute;top:0;width:100%}.with-love{color:red;display:inline-block;margin:0 5px;animation:1.33s ease-in-out infinite icon-animate}@keyframes icon-animate{0%,100%{transform:scale(1)}10%,30%{transform:scale(.9)}20%,40%,50%,60%,70%,80%{transform:scale(1.1)}}@media (max-width:567px){.main-inner{padding:initial!important}.posts-expand .post-header{margin-bottom:10px!important}.post-block{margin-top:initial!important;padding:8px 18px!important}.post-body h1,.post-body h2,.post-body h3,.post-body h4,.post-body h5,.post-body h6{margin:20px 0 8px}.post-body .note h1,.post-body .note h2,.post-body .note h3,.post-body .note h4,.post-body .note h5,.post-body .note h6,.post-body .tabs .tab-content .tab-pane h1,.post-body .tabs .tab-content .tab-pane h2,.post-body .tabs .tab-content .tab-pane h3,.post-body .tabs .tab-content .tab-pane h4,.post-body .tabs .tab-content .tab-pane h5,.post-body .tabs .tab-content .tab-pane h6{margin:0 5px}.post-body>p{margin:0 0 10px}.post-body .note>p,.post-body .tabs .tab-content .tab-pane>p{padding:0 5px}.post-body img,.post-body video{margin-bottom:10px!important}.post-body .fancybox+figcaption,.post-body .image-caption,.post-body img+figcaption{margin:-5px auto 15px!important}.post-body .note{margin-bottom:10px!important;padding:10px!important}.post-body .note:not(.no-icon){padding-left:35px!important}.post-body .tabs .tab-content .tab-pane{padding:10px 10px 0!important}.post-eof{margin:40px auto 20px!important}.pagination{margin-top:40px}}.back-to-top{font-size:12px;align-items:center;bottom:-100px;color:#fff;display:flex;height:26px;transition:bottom .2s ease-in-out;background:#222;cursor:pointer;opacity:.6;position:fixed;z-index:30;right:30px}.back-to-top span{margin-right:8px;display:none}.back-to-top .fa{text-align:center;width:26px}.back-to-top:hover{opacity:.8;color:#fc6423}.back-to-top.back-to-top-on{bottom:30px}.reading-progress-bar{--progress:0;background:#37c6c0;height:3px;position:fixed;z-index:50;width:var(--progress);left:0;top:0}.rtl.post-body a,.rtl.post-body h1,.rtl.post-body h2,.rtl.post-body h3,.rtl.post-body h4,.rtl.post-body h5,.rtl.post-body h6,.rtl.post-body li,.rtl.post-body ol,.rtl.post-body p,.rtl.post-body ul{direction:rtl;font-family:UKIJ Ekran}.rtl.post-title{font-family:UKIJ Ekran}.post-button{margin-top:40px;text-align:center}.use-motion .collection-header,.use-motion .comments,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{visibility:hidden}.posts-collapse .post-content{margin-bottom:35px;margin-left:35px;position:relative}@media (max-width:767px){.posts-collapse .post-content{margin-left:0;margin-right:0}}.posts-collapse .post-content .collection-title{font-size:1.125em;position:relative}.posts-collapse .post-content .collection-title::before{background:#999;border:1px solid #fff;margin-left:-6px;margin-top:-4px;position:absolute;top:50%;border-radius:50%;content:' ';height:10px;width:10px}.posts-collapse .post-content .collection-year{font-size:1.5em;font-weight:700;margin:60px 0;position:relative}.posts-collapse .post-content .collection-year::before{background:#bbb;margin-left:-4px;margin-top:-4px;position:absolute;top:50%;border-radius:50%;content:' ';height:8px;width:8px}.posts-collapse .post-content .collection-header{display:block;margin-left:20px}.posts-collapse .post-content .collection-header small{color:#bbb;margin-left:5px}.posts-collapse .post-content .post-header{border-bottom:1px dashed #ccc;margin:30px 2px 0;padding-left:15px;position:relative;transition:border .2s ease-in-out}.posts-collapse .post-content .post-header::before{background:#bbb;border:1px solid #fff;left:-6px;position:absolute;top:.75em;transition:background .2s ease-in-out;border-radius:50%;content:' ';height:6px;width:6px}.posts-collapse .post-content .post-header:hover{border-bottom-color:#666}.posts-collapse .post-content .post-header:hover::before{background:#222}.posts-collapse .post-content .post-meta-container{display:inline;font-size:.75em;margin-right:10px}.posts-collapse .post-content .post-title{display:inline}.posts-collapse .post-content .post-title a{border-bottom:0;color:var(--link-color)}.posts-collapse .post-content .post-title .fa-external-link-alt{font-size:.875em;margin-left:5px}.posts-collapse .post-content::before{background:#f5f5f5;content:' ';height:100%;margin-left:-2px;position:absolute;top:1.25em;width:4px}.post-body{font-family:Lato,'PingFang SC','Microsoft YaHei',sans-serif;overflow-wrap:break-word}@media (min-width:1200px){.post-body{font-size:1.125em}}@media (min-width:992px){.post-body{text-align:justify}}.post-body h1 .header-anchor,.post-body h1 .headerlink,.post-body h2 .header-anchor,.post-body h2 .headerlink,.post-body h3 .header-anchor,.post-body h3 .headerlink,.post-body h4 .header-anchor,.post-body h4 .headerlink,.post-body h5 .header-anchor,.post-body h5 .headerlink,.post-body h6 .header-anchor,.post-body h6 .headerlink{border-bottom-style:none;color:inherit;float:right;font-size:.875em;margin-left:10px;opacity:0}.post-body h1 .header-anchor::before,.post-body h1 .headerlink::before,.post-body h2 .header-anchor::before,.post-body h2 .headerlink::before,.post-body h3 .header-anchor::before,.post-body h3 .headerlink::before,.post-body h4 .header-anchor::before,.post-body h4 .headerlink::before,.post-body h5 .header-anchor::before,.post-body h5 .headerlink::before,.post-body h6 .header-anchor::before,.post-body h6 .headerlink::before{content:'\f0c1';font-family:'Font Awesome 6 Free';font-weight:900}.post-body h1:hover .header-anchor,.post-body h1:hover .headerlink,.post-body h2:hover .header-anchor,.post-body h2:hover .headerlink,.post-body h3:hover .header-anchor,.post-body h3:hover .headerlink,.post-body h4:hover .header-anchor,.post-body h4:hover .headerlink,.post-body h5:hover .header-anchor,.post-body h5:hover .headerlink,.post-body h6:hover .header-anchor,.post-body h6:hover .headerlink{opacity:.5}.post-body h1:hover .header-anchor:hover,.post-body h1:hover .headerlink:hover,.post-body h2:hover .header-anchor:hover,.post-body h2:hover .headerlink:hover,.post-body h3:hover .header-anchor:hover,.post-body h3:hover .headerlink:hover,.post-body h4:hover .header-anchor:hover,.post-body h4:hover .headerlink:hover,.post-body h5:hover .header-anchor:hover,.post-body h5:hover .headerlink:hover,.post-body h6:hover .header-anchor:hover,.post-body h6:hover .headerlink:hover{opacity:1}.post-body .exturl .fa{font-size:.875em;margin-left:4px}.post-body .fancybox+figcaption,.post-body .image-caption,.post-body img+figcaption{color:#999;font-size:.875em;font-weight:700;line-height:1;margin:-15px auto 15px;text-align:center}.post-body embed,.post-body iframe,.post-body img,.post-body video{margin-bottom:20px}.post-body .video-container{height:0;margin-bottom:20px;overflow:hidden;padding-top:75%;position:relative;width:100%}.post-body .video-container embed,.post-body .video-container iframe,.post-body .video-container object{height:100%;left:0;margin:0;position:absolute;top:0;width:100%}.post-gallery{display:flex;min-height:200px}.post-gallery .post-gallery-image{flex:1}.post-gallery .post-gallery-image:not(:first-child){clip-path:polygon(40px 0,100% 0,100% 100%,0 100%);margin-left:-20px}.post-gallery .post-gallery-image:not(:last-child){margin-right:-20px}.post-gallery .post-gallery-image img{height:100%;object-fit:cover;opacity:1;width:100%}.posts-expand .post-gallery{margin-bottom:60px}.posts-collapse .post-gallery{margin:15px 0}.posts-expand .post-header{font-size:1.125em;margin-bottom:60px;text-align:center}.posts-expand .post-title{font-size:1.5em;font-weight:400;margin:initial;overflow-wrap:break-word}.posts-expand .post-title .post-edit-link{border-bottom:0;color:#bbb;float:right;font-size:1.25em;margin-left:-1.2em;transition:color .2s ease-in}@media (max-width:567px){.posts-expand .post-title .post-edit-link{margin-left:initial}}.posts-expand .post-title .post-edit-link:hover{color:#fc6423}.posts-expand .post-title-link{border-bottom:0;color:var(--link-color);display:inline-block;position:relative}.posts-expand .post-title-link::before{background:var(--link-color);bottom:0;content:'';height:2px;left:0;position:absolute;transform:scaleX(0);transition:transform .2s ease-in-out;width:100%}.posts-expand .post-title-link:hover::before{transform:scaleX(1)}.posts-expand .post-title-link .fa-external-link-alt{font-size:.875em;margin-left:5px}.post-sticky-flag{display:inline-block;margin-right:8px;transform:rotate(30deg)}.posts-expand .post-meta-container{color:#999;font-family:Lato,'PingFang SC','Microsoft YaHei',sans-serif;font-size:.75em;margin-top:3px}.posts-expand .post-meta-container .post-description{font-size:.875em;margin-top:2px}.posts-expand .post-meta-container time{border-bottom:1px dashed #999}.post-meta{display:flex;flex-wrap:wrap;justify-content:center}:not(.post-meta-break)+.post-meta-item::before{content:'|';margin:0 .5em}.post-meta-item-icon{margin-right:3px}@media (max-width:991px){.back-to-top{right:20px;opacity:.8}.post-body{text-align:justify}.post-meta-item-text{display:none}}.post-meta-break{flex-basis:100%;height:0}.post-nav{border-top:1px solid #eee;display:flex;gap:30px;justify-content:space-between;margin-top:1em;padding:10px 5px 0}.post-nav-item{flex:1}.post-nav-item a{border-bottom:0;display:block;font-size:.875em;line-height:1.6}.post-nav-item a:active{top:2px}.post-nav-item .fa{font-size:.75em}.post-nav-item:first-child .fa{margin-right:5px}.post-nav-item:last-child{text-align:right}.post-nav-item:last-child .fa{margin-left:5px}.post-footer{display:flex;flex-direction:column;justify-content:center}.post-eof{background:#ccc;height:1px;margin:80px auto 60px;width:8%}.post-block:last-of-type .post-eof{display:none}.post-tags{margin-top:40px;text-align:center}.post-tags a{display:inline-block;font-size:.8125em}.post-tags a:not(:last-child){margin-right:10px}.social-like{border-top:1px solid #eee;font-size:.875em;margin-top:1em;padding-top:1em;display:flex;flex-wrap:wrap;justify-content:center}.social-like a{border-bottom:none}.reward-container{margin:1em 0 0;padding:1em 0;text-align:center}.reward-container button{background:0 0;color:#fc6423;cursor:pointer;line-height:2;padding:0 15px;border:2px solid #fc6423;border-radius:2px;outline:0;transition:.2s ease-in-out;vertical-align:text-top}.reward-container button:hover{background:#fc6423;color:#fff}.post-reward{display:none;padding-top:20px}.post-reward.active{display:block}.post-reward div{display:inline-block}.post-reward div span{display:block}.post-reward img{display:inline-block;margin:.8em 2em 0;max-width:100%;width:180px}@keyframes next-roll{from{transform:rotateZ(30deg)}to{transform:rotateZ(-30deg)}}.category-all-page .category-all-title{text-align:center}.category-all-page .category-all{margin-top:20px}.category-all-page .category-list{list-style:none;margin:0;padding:0}.category-all-page .category-list-item{margin:5px 10px}.category-all-page .category-list-count{color:#bbb}.category-all-page .category-list-count::before{content:' ('}.category-all-page .category-list-count::after{content:') '}.category-all-page .category-list-child{padding-left:10px}.event-list hr{background:#222;margin:20px 0 45px}.event-list hr::after{background:#222;color:#fff;content:'NOW';display:inline-block;font-weight:700;padding:0 5px}.event-list .event{--event-background:#222;--event-foreground:#bbb;--event-title:#fff;background:var(--event-background);padding:15px}.event-list .event .event-summary{border-bottom:0;color:var(--event-title);margin:0;padding:0 0 0 35px;position:relative}.event-list .event .event-summary::before{animation:1s ease-in-out infinite alternate dot-flash;background:var(--event-title);left:0;margin-top:-6px;position:absolute;top:50%;border-radius:50%;content:' ';height:12px;width:12px}.event-list .event:nth-of-type(odd) .event-summary::before{animation-delay:.5s}.event-list .event:not(:last-child){margin-bottom:20px}.event-list .event .event-relative-time{color:var(--event-foreground);display:inline-block;font-size:12px;font-weight:400;padding-left:12px}.event-list .event .event-details{color:var(--event-foreground);display:block;line-height:18px;padding:6px 0 6px 35px}.event-list .event .event-details::before{color:var(--event-foreground);display:inline-block;margin-right:9px;width:14px;font-family:'Font Awesome 6 Free';font-weight:900}.event-list .event .event-details.event-location::before{content:'\f041'}.event-list .event .event-details.event-duration::before{content:'\f017'}.event-list .event .event-details.event-description::before{content:'\f024'}.event-list .event-past{--event-background:#f5f5f5;--event-foreground:#999;--event-title:#222}@keyframes dot-flash{from{opacity:1;transform:scale(1)}to{opacity:0;transform:scale(.8)}}ul.breadcrumb{font-size:.75em;list-style:none;margin:1em 0;padding:0 2em;text-align:center}ul.breadcrumb li{display:inline}ul.breadcrumb li:not(:first-child)::before{content:'/\00a0';font-weight:400;padding:.5em}ul.breadcrumb li:last-child{font-weight:700}.tag-cloud{text-align:center}.tag-cloud a{display:inline-block;margin:10px}.tag-cloud-0{border-bottom-color:#aaa;color:#aaa}.tag-cloud-1{border-bottom-color:#9a9a9a;color:#9a9a9a}.tag-cloud-2{border-bottom-color:#8b8b8b;color:#8b8b8b}.tag-cloud-3{border-bottom-color:#7c7c7c;color:#7c7c7c}.tag-cloud-4{border-bottom-color:#6c6c6c;color:#6c6c6c}.tag-cloud-5{border-bottom-color:#5d5d5d;color:#5d5d5d}.tag-cloud-6{border-bottom-color:#4e4e4e;color:#4e4e4e}.tag-cloud-7{border-bottom-color:#3e3e3e;color:#3e3e3e}.tag-cloud-8{border-bottom-color:#2f2f2f;color:#2f2f2f}.tag-cloud-9{border-bottom-color:#202020;color:#202020}.tag-cloud-10{border-bottom-color:#111;color:#111}.search-active{overflow:hidden}.search-pop-overlay{background:rgba(0,0,0,0);display:flex;height:100%;left:0;position:fixed;top:0;transition:visibility .4s,background .4s;visibility:hidden;width:100%;z-index:40}.search-active .search-pop-overlay{background:rgba(0,0,0,.3);visibility:visible}.search-popup{background:var(--card-bg-color);border-radius:5px;height:80%;margin:auto;transform:scale(0);transition:transform .4s;width:700px}.search-active .search-popup{transform:scale(1)}@media (max-width:767px){.search-popup{border-radius:0;height:100%;width:100%}}.search-popup .popup-btn-close,.search-popup .search-icon{color:#999;font-size:18px;padding:0 10px}.search-popup .popup-btn-close{cursor:pointer}.search-popup .popup-btn-close:hover .fa{color:#222}.search-popup .search-header{background:#eee;border-top-left-radius:5px;border-top-right-radius:5px;display:flex;padding:5px}@media (prefers-color-scheme:dark){.tag-cloud-0{border-bottom-color:#555;color:#555}.tag-cloud-1{border-bottom-color:#646464;color:#646464}.tag-cloud-2{border-bottom-color:#737373;color:#737373}.tag-cloud-3{border-bottom-color:#828282;color:#828282}.tag-cloud-4{border-bottom-color:#929292;color:#929292}.tag-cloud-5{border-bottom-color:#a1a1a1;color:#a1a1a1}.tag-cloud-6{border-bottom-color:#b0b0b0;color:#b0b0b0}.tag-cloud-7{border-bottom-color:silver;color:silver}.tag-cloud-8{border-bottom-color:#cfcfcf;color:#cfcfcf}.tag-cloud-9{border-bottom-color:#dedede;color:#dedede}.tag-cloud-10{border-bottom-color:#eee;color:#eee}.search-popup .search-header{background:#666}}.search-popup input.search-input{background:0 0;border:0;outline:0;width:100%}.search-popup input.search-input::-webkit-search-cancel-button{display:none}.search-popup .search-result-container{height:calc(100% - 55px);overflow:auto;padding:5px 25px}.search-popup .search-result-container hr{margin:5px 0 10px}.search-popup .search-result-container hr:first-child{display:none}.search-popup .search-result-list{margin:0 5px;padding:0;width:100%}.search-popup a.search-result-title{font-weight:700}.search-popup p.search-result{border-bottom:1px dashed #ccc;padding:5px 0}.search-popup .search-input-container{flex-grow:1;padding:2px}.search-popup .no-result{display:flex}.search-popup .search-result-icon{color:#ccc;margin:auto}mark.search-keyword{background:0 0;border-bottom:1px dashed #ff2a2a;color:#ff2a2a;font-weight:700}.has-jax,mjx-container[jax=CHTML][display=true]{overflow:auto hidden}mjx-container[display=true]+br{display:none}.use-motion .animated{animation-fill-mode:none;visibility:inherit}.use-motion .sidebar .animated{animation-fill-mode:both}header.header{background:var(--content-bg-color);border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12)}.main{align-items:stretch;display:flex;justify-content:space-between;margin:0 auto;width:calc(100% - 20px)}@media (max-width:767px){.main{width:auto}}@media (min-width:1200px){.main{width:1160px}}@media (min-width:1600px){.main{width:73%}}@media (max-width:991px){header.header{border-radius:initial}.main{display:block;width:auto}}.main-inner{border-radius:initial;box-sizing:border-box;width:calc(100% - 252px)}.footer-inner{padding-left:252px}@media (max-width:991px){.main-inner{border-radius:initial;width:100%}.footer-inner{padding-left:0;padding-right:0;width:auto}}.column{width:240px}.site-brand-container{background:var(--theme-color)}.site-meta{padding:20px 0}.site-nav-right .toggle,.site-nav-toggle .toggle{color:#fff}.site-nav-right .toggle .toggle-line,.site-nav-toggle .toggle .toggle-line{background:#fff}@media (min-width:768px) and (max-width:991px){.site-nav-right,.site-nav-toggle{display:flex;flex-direction:column;justify-content:center}.site-nav{--scroll-height:0;height:0;overflow:hidden;transition:height .2s ease-in-out,visibility .2s ease-in-out;visibility:hidden}body:not(.site-nav-on) .site-nav .animated{animation:none}body.site-nav-on .site-nav{height:var(--scroll-height);visibility:unset}}.menu .menu-item{display:block;margin:0}.menu .menu-item a{padding:5px 20px;position:relative;text-align:left;transition-property:background-color}.menu .menu-item .badge{background:#ccc;border-radius:10px;color:var(--content-bg-color);float:right;padding:2px 5px;text-shadow:1px 1px 0 rgba(0,0,0,.1)}.sub-menu{margin:0;padding:6px 0}.sub-menu .menu-item{display:inline-block}.sub-menu .menu-item a{background:0 0;margin:5px 10px;padding:initial}.sub-menu .menu-item a:hover{background:0 0;color:#fc6423}.sub-menu .menu-item-active{border-bottom-color:#fc6423;color:#fc6423}.sub-menu .menu-item-active:hover{border-bottom-color:#fc6423}.sidebar{position:-webkit-sticky;position:sticky;top:12px}@media (max-width:991px){.column{width:auto}.site-nav-on .site-brand-container{box-shadow:0 0 16px rgba(0,0,0,.5)}.menu .menu-item.menu-item-search,.sidebar{display:none}}.sidebar-inner{background:var(--content-bg-color);border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12),0 -1px .5px 0 rgba(0,0,0,.09);box-sizing:border-box;color:var(--text-color);margin-top:12px;max-height:calc(100vh - 24px)}.site-state-item{padding:0 10px}.sidebar .sidebar-button{border-bottom:1px dotted #ccc;border-top:1px dotted #ccc}.sidebar .sidebar-button button{border:0;color:#fc6423;display:block;width:100%}.sidebar .sidebar-button button:hover{background:0 0;border:0;color:#e34603}.links-of-author{display:flex;flex-wrap:wrap;justify-content:center}.links-of-author-item{margin:5px 0 0}.links-of-author-item a{box-sizing:border-box;max-width:100%;overflow:hidden;padding:0 5px;text-overflow:ellipsis;white-space:nowrap;border-bottom:0;border-radius:4px;display:block}.links-of-author-item a:hover{background:var(--body-bg-color)}.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .post-block,.main-inner .sub-menu,.main-inner .tabs-comment,.main-inner>.comments{background:var(--content-bg-color);border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12)}.main-inner .post-block:not(:first-child):not(:first-child){border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12),0 -1px .5px 0 rgba(0,0,0,.09);margin-top:12px}@media (min-width:768px) and (max-width:991px){.main-inner .post-block:not(:first-child):not(:first-child){margin-top:10px}}@media (max-width:767px){.main-inner .post-block:not(:first-child):not(:first-child){margin-top:8px}}.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .tabs-comment,.main-inner>.comments{border-radius:initial;box-shadow:0 2px 2px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.06),0 1px 5px 0 rgba(0,0,0,.12),0 -1px .5px 0 rgba(0,0,0,.09);margin-top:12px}@media (min-width:768px) and (max-width:991px){.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .tabs-comment,.main-inner>.comments{margin-top:10px}}@media (max-width:767px){.main-inner .comment-position .comments,.main-inner .pagination,.main-inner .tabs-comment,.main-inner>.comments{margin-top:8px}}.comments,.post-block{padding:40px}.post-eof{display:none}.pagination{border-top:initial;padding:10px 0}.post-body h1,.post-body h2{border-bottom:1px solid #eee}.post-body h3{border-bottom:1px dotted #eee}@media (min-width:768px) and (max-width:991px){.main-inner{padding:10px}.posts-expand .post-button{margin-top:20px}.post-block{padding:20px}.comments{padding:10px 20px}}@media (max-width:767px){.main-inner{padding:8px}.posts-expand .post-button{margin:12px 0}.post-block{padding:12px}.comments{padding:10px 12px}} \ No newline at end of file diff --git a/index.html b/index.html index e4ce6c8..c4706bd 100644 --- a/index.html +++ b/index.html @@ -1,5 +1,5 @@ -DeepModeling - Define the future of scientific computing together

DeepModeling

Define the future of scientific computing together

The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding
frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other's work, and of the pursuit of harmony among diversity.

The DeepModeling community is a community of such a group of people.

Read more »

Lecture 1: Deep Potential Method for Molecular Simulation, Roberto Car

Lecture 2: Deep Potential at Scale, Linfeng Zhang

Lecture 3: Towards a Realistic Description of H3O+ and OH- Transport, Robert A. DiStasio Jr.

Lecture 4: Next Generation Quantum and Deep Learning Potentials, Darrin York

Lecture 5: Linear Response Theory of Transport in Condensed Matter, Stefano Baroni

Lecture 6: Deep Modeling with Long-Range Electrostatic Interactions, Chunyi Zhang

Hands-on session 4: Machine learning of Wannier centers and dipoles

Hands-on session 5: Long range electrostatic interactions with DPLR

Hands-on session 6: Concurrent learning with DP-GEN

Do you prepare to read a long article before clicking the tutorial? Since we can teach you how to setup a DeePMD-kit training in 5 minutes, we can also teach you how to install DeePMD-kit in 5 minutes. The installation manual will be introduced as follows:

Install with conda

After you install conda, you can install the CPU version with the following command:

1
conda install deepmd-kit=*=*cpu lammps-dp=*=*cpu -c deepmodeling

To install the GPU version containing CUDA 10.1:

1
conda install deepmd-kit=*=*gpu lammps-dp=*=*gpu -c deepmodeling

If you want to use the specific version, just replace * with the version:

1
conda install deepmd-kit=1.3.3=*cpu lammps-dp=1.3.3=*cpu -c deepmodeling

Install with offline packages

Download offline packages in the Releases page, or use wget:

1
wget https://github.com/deepmodeling/deepmd-kit/releases/download/v1.3.3/deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh -O deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh

Take an example of v1.3.3. Execuate the following commands and just follow the prompts.

1
sh deepmd-kit-1.3.1-cuda10.1_gpu-Linux-x86_64.sh

With Docker

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cpu
To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cuda10.1_gpu

Tips

dp is the program of DeePMD-kit and lmp is the program of LAMMPS.

1
2
dp -h
lmp -h

GPU version has contained CUDA Toolkit. Note that different CUDA versions support different NVIDIA driver versions. See NVIDIA documents for details.

Don't hurry up and try such a convenient installation process. But I still want to remind everyone that the above installation methods only support the official version released by DeePMD-kit. If you need to use the devel version, you still need to go through a long compilation process. Please refer to the installation manual.

DeePMD-kit is a software to implement Deep Potential. There is a lot of information on the Internet, but there are not so many tutorials for the new hand, and the official guide is too long. Today, I'll take you 5 minutes to get started with DeePMD-kit.

Let's take a look at the training process of DeePMD-kit:

+DeepModeling - Define the future of scientific computing together

DeepModeling

Define the future of scientific computing together

The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding
frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other's work, and of the pursuit of harmony among diversity.

The DeepModeling community is a community of such a group of people.

Read more »

Lecture 1: Deep Potential Method for Molecular Simulation, Roberto Car

Lecture 2: Deep Potential at Scale, Linfeng Zhang

Lecture 3: Towards a Realistic Description of H3O+ and OH- Transport, Robert A. DiStasio Jr.

Lecture 4: Next Generation Quantum and Deep Learning Potentials, Darrin York

Lecture 5: Linear Response Theory of Transport in Condensed Matter, Stefano Baroni

Lecture 6: Deep Modeling with Long-Range Electrostatic Interactions, Chunyi Zhang

Hands-on session 4: Machine learning of Wannier centers and dipoles

Hands-on session 5: Long range electrostatic interactions with DPLR

Hands-on session 6: Concurrent learning with DP-GEN

Do you prepare to read a long article before clicking the tutorial? Since we can teach you how to setup a DeePMD-kit training in 5 minutes, we can also teach you how to install DeePMD-kit in 5 minutes. The installation manual will be introduced as follows:

Install with conda

After you install conda, you can install the CPU version with the following command:

1
conda install deepmd-kit=*=*cpu lammps-dp=*=*cpu -c deepmodeling

To install the GPU version containing CUDA 10.1:

1
conda install deepmd-kit=*=*gpu lammps-dp=*=*gpu -c deepmodeling

If you want to use the specific version, just replace * with the version:

1
conda install deepmd-kit=1.3.3=*cpu lammps-dp=1.3.3=*cpu -c deepmodeling

Install with offline packages

Download offline packages in the Releases page, or use wget:

1
wget https://github.com/deepmodeling/deepmd-kit/releases/download/v1.3.3/deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh -O deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh

Take an example of v1.3.3. Execuate the following commands and just follow the prompts.

1
sh deepmd-kit-1.3.1-cuda10.1_gpu-Linux-x86_64.sh

With Docker

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cpu
To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cuda10.1_gpu

Tips

dp is the program of DeePMD-kit and lmp is the program of LAMMPS.

1
2
dp -h
lmp -h

GPU version has contained CUDA Toolkit. Note that different CUDA versions support different NVIDIA driver versions. See NVIDIA documents for details.

Don't hurry up and try such a convenient installation process. But I still want to remind everyone that the above installation methods only support the official version released by DeePMD-kit. If you need to use the devel version, you still need to go through a long compilation process. Please refer to the installation manual.

DeePMD-kit is a software to implement Deep Potential. There is a lot of information on the Internet, but there are not so many tutorials for the new hand, and the official guide is too long. Today, I'll take you 5 minutes to get started with DeePMD-kit.

Let's take a look at the training process of DeePMD-kit:

 graph LR
 A[Prepare data] --> B[Training]
 B --> C[Freeze the model]
-

What? Only three steps? Yes, it's that simple.

Read more »
0%
\ No newline at end of file +

What? Only three steps? Yes, it's that simple.

Read more »
0%
\ No newline at end of file diff --git a/manifesto/index.html b/manifesto/index.html index 855167c..956757b 100644 --- a/manifesto/index.html +++ b/manifesto/index.html @@ -1 +1 @@ -The DeepModeling Manifesto | DeepModeling

The DeepModeling Manifesto

The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding
frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other's work, and of the pursuit of harmony among diversity.

The DeepModeling community is a community of such a group of people.

What is DeepModeling?

The two most important applications of computing are machine learning and physical modeling. The former is an effective tool for analyzing complex data; the latter is a scientific description of the physical world. The vitality boosted by the effective integration of the two is changing all aspects of scientific research. DeepModeling will ultimately be a set of methodologies and tools that combine machine learning, physical modeling, and cutting-edge computational platforms. People who are attracted by the DeepModeling community are attracted by its open, inclusive environment, as well as its dedication to the cause of advancing scientific computing worldwide.

Why choose open source?

There are different interpretations of the term "open source". The consensus among the DeepModeling community is that open source is a collaborative software development platform based on the spirit of openness and sharing. Open source is a familiar concept for people in the fields of machine learning and computer science, but it is not yet popular in the field of scientific computing. What we advocate is that an algorithm or software should not be judged by the reputation of the journal in which it is published, but by its ability to solve real world problems and its actual contribution to science. The sustainable development of a software requires continuous investment in manpower. It should undergo incremental improvement, and it should be put to the test of solving real-world problems in an open environment. This is often difficult to achieve by individuals or individual groups. The open-source community provides better solutions.

The history of the DeepModeling community

The "DeepModeling Community" started with the initiation of the "deepmd-kit" project. “deepmd-kit" is a software tool that combines machine learning and molecular dynamics, which helps to overcome a long-standing difficulty in the field of molecular dynamics, namely the dilemma of having to choose between efficiency and accuracy. The name "DeepModeling" was proposed by early developers of the deepmd-kit project, with the intention of using deep learning tools to solve the curse of dimensionality problem in multi-scale modeling. DeepModeling has therefore become the name of the GitHub organization (https://github.com/deepmodeling) which manages the original deepmd-kit project. After the development of deepmd-kit, the DeepModeling community has successively initiated projects such as dpdata, dp-gen, and dpdispatcher, and extended the modeling scale to electronic structure level through projects such as deepks-kit and ABACUS. These projects have brought together people from all over the world working on molecular simulations.

The short-term plan and long-term vision of the DeepModeling community

In the short term, developers in the DeepModeling community will focus on atomic-scale simulation methods and tools. This includes solving the many-body Schrödinger equation, electronic structure calculation, molecular dynamics simulation, and coarse-grained molecular dynamics simulation. This also includes tasks such as data generation, model training, high-performance optimization, etc. In addition, it includes different workflows and management tools, as well as computing power scheduling tools for different systems, different scenarios, and different purposes.

It should be pointed out that the combination of physical modeling and machine learning often fundamentally changes the implementation logic of a piece of software. Therefore, the new infrastructure will not be settled once and for all, but will be gradually improved through an iterative process and upgrades from time to time.

In the long run, the DeepModeling community is committed to combining physical models at all scales with machine learning methods, using the most cutting-edge computing platforms to solve the most challenging scientific and technological problems faced by the human society.

How can you contribute?

If you want to contribute to an existing project in the DeepModeling community, please just do so or contact
the corresponding developer directly; if you want to open a new project in the DeepModeling community, or if you want the DeepModeling community to help develop your project, just contact contact@deepmodeling.org.

If you are a programmer who loves science and is attracted by the future scientific computing platform built by the DeepModeling community, you can contribute not only through new algorithms, but also code development specifications, document writing specifications, community databases, task scheduling, workflow management and other tools. In addition, you can contribute to code architecture design and high-performance optimization tasks in the DeepModeling community. People in the field of scientific computing will greatly appreciate your expertise and contribution.

If you are a hardcore developer familiar with topics such as electronic structure calculations, molecular dynamics, and finite element methods, the DeepModeling community will be your place to showcase your talents. The addition of machine learning components requires us to rethink about architecture design, each specific implementation for the tasks mentioned above and high-performance optimization. You will become important bridges that connect other developers, contributors, and users in different areas.

If you have only used some basic scientific software and have worked on some post-processing scripts, the DeepModeling community also needs you. Try to ask questions and communicate on github/gitee and other communication platforms, try to give opinions, and try to fork, commit, pr... Your little by little contribution will make the DeepModeling community better and better, and the DeepModeling community will be very grateful for such contributions.

Even if you are just a bystander, if you support the concept of the DeepModeling community, your recognition and dissemination will also be a great encouragement and support for the DeepModeling community.

Final remarks

Despite the tremendous advances in AI and computing power, the scientific computing community is largely embedded in an old-fashioned culture. Many of the most important tasks rely on legacy codes. The core algorithms used in many commercial software have been outdated. The self-sufficient style of work is similar to that of the agricultural ages
resulting in poor efficiency. It is only in recent years that some promising open-source communities have emerged. However, these communities are often aimed at specific tools for specific scales, and are often maintained by specific academic research groups. They face serious challenges in terms of continuous development and improved user experience.

The DeepModeling project promises to change all that.

The combination of machine learning and physical modeling calls for a new paradigm, the open-source community paradigm. Such a paradigm has long been embraced in the computer and electronics industry, with Linux and Andriod being the very well-known examples. In this sense, what the DeepModeling project does is to borrow these ideas and use them for scientific computing. For people in computational science and engineering, efficient and reusable modeling tools that can be continuously improved will free researchers from the plight of no model or with only ad hoc models. For those who work on machine learning, the world of physical models will provide a relatively new and surely vast playground. Working together as an open-source community will make our work more productive, up to date, reliable, and transparent. The spirit of close collaboration, of respect and building on each other’s work will surely inspire more and more people to join the cause of advancing computing for the benefit of the human society. This is an exciting opportunity. This is the future of scientific computing!

0%
\ No newline at end of file +The DeepModeling Manifesto | DeepModeling

The DeepModeling Manifesto

The integration of machine learning and physical modeling is changing the paradigm of scientific research. Those who hope to extend the frontier of science and solve challenging practical problems through computational modeling are coming together in new ways never seen before. This calls for a new infrastructure--new platforms for collaboration, new coding
frameworks, new data processing schemes, and new ways of using the computing power. It also calls for a new culture—the culture of working together closely for the benefit of all, of free exchange and sharing of knowledge and tools, of respect and appreciation of each other's work, and of the pursuit of harmony among diversity.

The DeepModeling community is a community of such a group of people.

What is DeepModeling?

The two most important applications of computing are machine learning and physical modeling. The former is an effective tool for analyzing complex data; the latter is a scientific description of the physical world. The vitality boosted by the effective integration of the two is changing all aspects of scientific research. DeepModeling will ultimately be a set of methodologies and tools that combine machine learning, physical modeling, and cutting-edge computational platforms. People who are attracted by the DeepModeling community are attracted by its open, inclusive environment, as well as its dedication to the cause of advancing scientific computing worldwide.

Why choose open source?

There are different interpretations of the term "open source". The consensus among the DeepModeling community is that open source is a collaborative software development platform based on the spirit of openness and sharing. Open source is a familiar concept for people in the fields of machine learning and computer science, but it is not yet popular in the field of scientific computing. What we advocate is that an algorithm or software should not be judged by the reputation of the journal in which it is published, but by its ability to solve real world problems and its actual contribution to science. The sustainable development of a software requires continuous investment in manpower. It should undergo incremental improvement, and it should be put to the test of solving real-world problems in an open environment. This is often difficult to achieve by individuals or individual groups. The open-source community provides better solutions.

The history of the DeepModeling community

The "DeepModeling Community" started with the initiation of the "deepmd-kit" project. “deepmd-kit" is a software tool that combines machine learning and molecular dynamics, which helps to overcome a long-standing difficulty in the field of molecular dynamics, namely the dilemma of having to choose between efficiency and accuracy. The name "DeepModeling" was proposed by early developers of the deepmd-kit project, with the intention of using deep learning tools to solve the curse of dimensionality problem in multi-scale modeling. DeepModeling has therefore become the name of the GitHub organization (https://github.com/deepmodeling) which manages the original deepmd-kit project. After the development of deepmd-kit, the DeepModeling community has successively initiated projects such as dpdata, dp-gen, and dpdispatcher, and extended the modeling scale to electronic structure level through projects such as deepks-kit and ABACUS. These projects have brought together people from all over the world working on molecular simulations.

The short-term plan and long-term vision of the DeepModeling community

In the short term, developers in the DeepModeling community will focus on atomic-scale simulation methods and tools. This includes solving the many-body Schrödinger equation, electronic structure calculation, molecular dynamics simulation, and coarse-grained molecular dynamics simulation. This also includes tasks such as data generation, model training, high-performance optimization, etc. In addition, it includes different workflows and management tools, as well as computing power scheduling tools for different systems, different scenarios, and different purposes.

It should be pointed out that the combination of physical modeling and machine learning often fundamentally changes the implementation logic of a piece of software. Therefore, the new infrastructure will not be settled once and for all, but will be gradually improved through an iterative process and upgrades from time to time.

In the long run, the DeepModeling community is committed to combining physical models at all scales with machine learning methods, using the most cutting-edge computing platforms to solve the most challenging scientific and technological problems faced by the human society.

How can you contribute?

If you want to contribute to an existing project in the DeepModeling community, please just do so or contact
the corresponding developer directly; if you want to open a new project in the DeepModeling community, or if you want the DeepModeling community to help develop your project, just contact contact@deepmodeling.org.

If you are a programmer who loves science and is attracted by the future scientific computing platform built by the DeepModeling community, you can contribute not only through new algorithms, but also code development specifications, document writing specifications, community databases, task scheduling, workflow management and other tools. In addition, you can contribute to code architecture design and high-performance optimization tasks in the DeepModeling community. People in the field of scientific computing will greatly appreciate your expertise and contribution.

If you are a hardcore developer familiar with topics such as electronic structure calculations, molecular dynamics, and finite element methods, the DeepModeling community will be your place to showcase your talents. The addition of machine learning components requires us to rethink about architecture design, each specific implementation for the tasks mentioned above and high-performance optimization. You will become important bridges that connect other developers, contributors, and users in different areas.

If you have only used some basic scientific software and have worked on some post-processing scripts, the DeepModeling community also needs you. Try to ask questions and communicate on github/gitee and other communication platforms, try to give opinions, and try to fork, commit, pr... Your little by little contribution will make the DeepModeling community better and better, and the DeepModeling community will be very grateful for such contributions.

Even if you are just a bystander, if you support the concept of the DeepModeling community, your recognition and dissemination will also be a great encouragement and support for the DeepModeling community.

Final remarks

Despite the tremendous advances in AI and computing power, the scientific computing community is largely embedded in an old-fashioned culture. Many of the most important tasks rely on legacy codes. The core algorithms used in many commercial software have been outdated. The self-sufficient style of work is similar to that of the agricultural ages
resulting in poor efficiency. It is only in recent years that some promising open-source communities have emerged. However, these communities are often aimed at specific tools for specific scales, and are often maintained by specific academic research groups. They face serious challenges in terms of continuous development and improved user experience.

The DeepModeling project promises to change all that.

The combination of machine learning and physical modeling calls for a new paradigm, the open-source community paradigm. Such a paradigm has long been embraced in the computer and electronics industry, with Linux and Andriod being the very well-known examples. In this sense, what the DeepModeling project does is to borrow these ideas and use them for scientific computing. For people in computational science and engineering, efficient and reusable modeling tools that can be continuously improved will free researchers from the plight of no model or with only ad hoc models. For those who work on machine learning, the world of physical models will provide a relatively new and surely vast playground. Working together as an open-source community will make our work more productive, up to date, reliable, and transparent. The spirit of close collaboration, of respect and building on each other’s work will surely inspire more and more people to join the cause of advancing computing for the benefit of the human society. This is an exciting opportunity. This is the future of scientific computing!

0%
\ No newline at end of file diff --git a/papers/deepmd-kit/index.html b/papers/deepmd-kit/index.html index 73f267e..e616d90 100644 --- a/papers/deepmd-kit/index.html +++ b/papers/deepmd-kit/index.html @@ -1,2 +1,2 @@ -Publications driven by DeePMD-kit | DeepModeling

DeepModeling

Define the future of scientific computing together

Publications driven by DeePMD-kit

The following publications have used the DeePMD-kit software. Publications that only mentioned the DeePMD-kit will not be included below.

2023

Grain boundaries induce significant decrease in lattice thermal conductivity of CdTe

Xiaona Huang, Kun Luo, Yidi Shen, Yanan Yue, Qi An
Energy and AI, 2023, 11, 100210.
DOI: 10.1016/j.egyai.2022.100210

Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field

Yulong Ling, Kun Li, Mi Wang, Junfeng Lu, Chenlu Wang, Yanlei Wang, Hongyan He
Journal of Power Sources, 2023, 555, 232350.
DOI: 10.1016/j.jpowsour.2022.232350

Quasiplastic deformation in shocked nanocrystalline boron carbide: Grain boundary sliding and local amorphization

Jun Li, Qi An
Journal of the European Ceramic Society, 2023, 43, 208–216.
DOI: 10.1016/j.jeurceramsoc.2022.10.014

Accurate Fe-He machine learning potential for studying He effects in BCC-Fe

Krishna Chaitanya Pitike, Wahyu Setyawan
Journal of Nuclear Materials, 2023, 574, 154183.
DOI: 10.1016/j.jnucmat.2022.154183

Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics

Jianchuan Liu, Renxi Liu, Yu Cao, Mohan Chen
Phys. Chem. Chem. Phys., 2023.
DOI: 10.1039/d2cp04105g

Grain boundary sliding and distortion on a nanosecond timescale induce trap states in CsPbBr3: ab initio investigation with machine learning force field

Dongyu Liu, Yifan Wu, Andrey S Vasenko, Oleg V Prezhdo
Nanoscale, 2023, 15, 285–293.
DOI: 10.1039/d2nr05918e

Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method

B. Zhai, H.P. Wang
Computational Materials Science, 2023, 216, 111843.
DOI: 10.1016/j.commatsci.2022.111843

2022

Modeling Chemical Reactions in Alkali Carbonate-Hydroxide Electrolytes with Deep Learning Potentials

Anirban Mondal, Dina Kussainova, Shuwen Yue, Athanassios Z Panagiotopoulos
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00816

Spatial arrangement of dynamic surface species from solid-state NMR and machine learning-accelerated MD simulations

Takeshi Kobayashi, Da-Jiang Liu, Fr'ed'eric A Perras
Chem. Commun. (Camb)., 2022, 58, 13939–13942.
DOI: 10.1039/d2cc05861h

Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis

Yifan Wu, Dongyu Liu, Weibin Chu, Bipeng Wang, Andrey S Vasenko, Oleg V Prezhdo
ACS Appl. Mater. Interfaces, 2022, 14, 55753–55761.
DOI: 10.1021/acsami.2c16203

Modeling Short-Range and Three-Membered Ring Structures in Lithium Borosilicate Glasses Using a Machine-Learning Potential

Shingo Urata
J. Phys. Chem. C, 2022, 126, 21507–21517.
DOI: 10.1021/acs.jpcc.2c07597

Lattice Thermal Conductivity of MgSiO3 Perovskite and Post- Perovskite under Lower Mantle Conditions Calculated by Deep Potential Molecular Dynamics

Fenghu Yang, Qiyu Zeng, Bo Chen, Dongdong Kang, Shen Zhang, Jianhua Wu, Xiaoxiang Yu, Jiayu Dai
Chinese Phys. Lett., 2022, 39, 116301.
DOI: 10.1088/0256-307X/39/11/116301

Origin of the herringbone reconstruction of Au(111) surface at the atomic scale

Pai Li, Feng Ding
Sci. Adv., 2022, 8, eabq2900.
DOI: 10.1126/sciadv.abq2900

Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics

Yong-Bin Zhuang, Rui-Hao Bi, Jun Cheng
J. Chem. Phys., 2022, 157, 164701.
DOI: 10.1063/5.0126333

Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles

Marco Fronzi, Roger D Amos, Rika Kobayashi, Naoki Matsumura, Kenta Watanabe, Rafael K Morizawa
Nanomaterials (Basel)., 2022, 12, 3891.
DOI: 10.3390/nano12213891

Predicted superconductivity and superionic state in the electride Li5N under high pressure

Zhongyu Wan, Chao Zhang, Tianyi Yang, Wenjun Xu, Ruiqin Zhang
New J. Phys., 2022, 24, 113012.
DOI: 10.1088/1367-2630/ac9cff

Origin of negative thermal expansion and pressure-induced amorphization in zirconium tungstate from a machine-learning potential

Ri He, Hongyu Wu, Yi Lu, Zhicheng Zhong
Phys. Rev. B, 2022, 106, 174101.
DOI: 10.1103/PhysRevB.106.174101

Phonon Thermal Transport inBi2Te3from a Deep-Neural-Network Interatomic Potential

Robert D McMichael, Sean M Blakley
Phys. Rev. Appl., 2022, 18, 54022.
DOI: 10.1103/PhysRevApplied.18.054022

Piezo- and Pyroelectricity in Zirconia: A Study with Machine-Learned Force Fields

Robert D McMichael, Sean M Blakley
Phys. Rev. Appl., 2022, 18, 54066.
DOI: 10.1103/PhysRevApplied.18.054066

Classical and machine learning interatomic potentials for BCC vanadium

Rui Wang, Xiaoxiao Ma, Linfeng Zhang, Han Wang, David J. Srolovitz, Tongqi Wen, Zhaoxuan Wu
Phys. Rev. Materials, 2022, 6, 113603.
DOI: 10.1103/PhysRevMaterials.6.113603

Order of magnitude reduction in Joule heating of single molecular junctions between graphene electrodes

Gen Li, Bing-Zhong Hu, Wen-Hao Mao, Nuo Yang, Jing-Tao L"u
J. Chem. Phys., 2022, 157, 174303.
DOI: 10.1063/5.0118952

Plastic deformation of superionic water ices

Filipe Matusalem, J'essica Santos Rego, Maurice de Koning
Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2203397119.
DOI: 10.1073/pnas.2203397119

Metal Affinity of Support Dictates Sintering of Gold Catalysts

Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li
J. Am. Chem. Soc., 2022, 144, 20601–20609.
DOI: 10.1021/jacs.2c06785

Multireference Generalization of the Weighted Thermodynamic Perturbation Method

Timothy J Giese, Jinzhe Zeng, Darrin M York
J. Phys. Chem. A, 2022, 126, 8519–8533.
DOI: 10.1021/acs.jpca.2c06201

Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning

Dong Wang, Zhongqing Wu, Xin Deng
Geophysical Research Letters, 2022, 49.
DOI: 10.1029/2022GL100337

DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials

Wenfei Li, Qi Ou, Yixiao Chen, Yu Cao, Renxi Liu, Chunyi Zhang, Daye Zheng, Chun Cai, Xifan Wu, Han Wang, Mohan Chen, Linfeng Zhang
J. Phys. Chem. A, 2022, 126, 9154–9164.
DOI: 10.1021/acs.jpca.2c05000

Centroid Molecular Dynamics Can Be Greatly Accelerated through Neural Network Learned Centroid Forces Derived from Path Integral Molecular Dynamics

Timothy D Loose, Patrick G Sahrmann, Gregory A Voth
J. Chem. Theory Comput., 2022, 18, 5856–5863.
DOI: 10.1021/acs.jctc.2c00706

Moir'e Phonons in Magic-Angle Twisted Bilayer Graphene

Xiaoqian Liu, Ran Peng, Zhaoru Sun, Jianpeng Liu
Nano Lett., 2022, 22, 7791–7797.
DOI: 10.1021/acs.nanolett.2c02010

Modeling the Solvation and Acidity of Carboxylic Acids Using an Ab Initio Deep Neural Network Potential

Abhinav S Raman, Annabella Selloni
J. Phys. Chem. A, 2022, 126, 7283–7290.
DOI: 10.1021/acs.jpca.2c06252

Photoelectron spectra of water and simple aqueous solutions at extreme conditions

Zifan Ye, Cunzhi Zhang, Giulia Galli
Faraday Discuss., 2022, 236, 352–363.
DOI: 10.1039/d2fd00003b

Deep potential for a face-centered cubic Cu system at finite temperatures

Yunzhen Du, Zhaocang Meng, Qiang Yan, Canglong Wang, Yuan Tian, Wenshan Duan, Sheng Zhang, Ping Lin
Phys. Chem. Chem. Phys., 2022, 24, 18361–18369.
DOI: 10.1039/D2CP02758E

Thermal transport properties of monolayer GeS and SnS: A comparative study based on machine learning and SW interatomic potential models

Wentao Li, Chenxiu Yang
AIP Advances, 2022, 12, 85111.
DOI: 10.1063/5.0099448

Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles

Xiaoning Wang, Haidi Wang, Qiquan Luo, Jinlong Yang
J. Chem. Phys., 2022, 157, 74304.
DOI: 10.1063/5.0100505

A Deep Neural Network Interface Potential for Li-Cu Systems

Genming Lai, Junyu Jiao, Chi Fang, Ruiqi Zhang, Xianqi Xu, Liyuan Sheng, Yao Jiang, Chuying Ouyang, Jiaxin Zheng
Adv Materials Inter, 2022, 9, 2201346.
DOI: 10.1002/admi.202201346

Strategy to consider element distribution when constructing training datasets for developing machine learning potentials of alloys based on a Monte-Carlo-like method

Zhipeng Zhang, Liuqing Chen, Junyi Guo, Xianyin Duan, Bin Shan, Xianbao Duan
Phys. Rev. B, 2022, 106, 94107.
DOI: 10.1103/PhysRevB.106.094107

Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution

Timoth'ee Devergne, Th'eo Magrino, Fabio Pietrucci, A Marco Saitta
J. Chem. Theory Comput., 2022, 18, 5410–5421.
DOI: 10.1021/acs.jctc.2c00400

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng, Ke Xu, Eric Lindgren, J Magnus Rahm, Alexander J Gabourie, Jiahui Liu, Haikuan Dong, Jianyang Wu, Yue Chen, Zheng Zhong, Jian Sun, Paul Erhart, Yanjing Su, Tapio Ala-Nissila
J. Chem. Phys., 2022, 157, 114801.
DOI: 10.1063/5.0106617

Magnetocaloric effect in ScGdTbDyHo high-entropy alloy: Impact of synthesis route

S.A. Uporov, S. Kh Estemirova, E.V. Sterkhov, I.A. Balyakin, A.A. Rempel
Intermetallics, 2022, 151, 107678.
DOI: 10.1016/j.intermet.2022.107678

A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment

Xiaoyang Wang, Yinan Wang, Linfeng Zhang, Fuzhi Dai, Han Wang
Nucl. Fusion, 2022, 62, 126013.
DOI: 10.1088/1741-4326/ac888b

Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential

Wei Zhang, Li Zhou, Bin Yang, Tinggui Yan
Journal of Molecular Liquids, 2022, 367, 120500.
DOI: 10.1016/j.molliq.2022.120500

DP Compress: A Model Compression Scheme for Generating Efficient Deep Potential Models

Denghui Lu, Wanrun Jiang, Yixiao Chen, Linfeng Zhang, Weile Jia, Han Wang, Mohan Chen
18, 2022, 5555–5567.
DOI: 10.1021/acs.jctc.2c00102

Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution

Timoth'ee Devergne, Th'eo Magrino, Fabio Pietrucci, A Marco Saitta
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00400

A Deep Neural Network Interface Potential for Li-Cu Systems

Genming Lai, Junyu Jiao, Chi Fang, Ruiqi Zhang, Xianqi Xu, Liyuan Sheng, Yao Jiang, Chuying Ouyang, Jiaxin Zheng
Adv Materials Inter, 2022, 2201346.
DOI: 10.1002/admi.202201346

Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling\textreferencemark

Sen Xu, Liling Wu, Zhenyu Li
Acta Chimica Sinica, 2022, 80, 598.
DOI: 10.6023/A22010003

Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks

Jinfeng Liu, Jinggang Lan, Xiao He
J. Phys. Chem. A, 2022, 126, 3926–3936.
DOI: 10.1021/acs.jpca.2c00601

A Deep Neural Network Potential for Water Confined in Graphene Nanocapillaries

Wen Zhao, Hu Qiu, Wanlin Guo
J. Phys. Chem. C, 2022, 126, 10546–10553.
DOI: 10.1021/acs.jpcc.2c02423

Soft-phonon anharmonicity, floppy modes, and Na diffusion in Na3FY (Y=S,Se,Te): Ab initio and machine-learned molecular dynamics simulations

Mayanak Kumar Gupta, Sajan Kumar, Ranjan Mittal, Samrath L. Chaplot
Phys. Rev. B, 2022, 106, 14311.
DOI: 10.1103/PhysRevB.106.014311

Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions

Timothy J Giese, Jinzhe Zeng, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2022, 18, 4304–4317.
DOI: 10.1021/acs.jctc.2c00151

Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning

Feng Wang, Jun Cheng
J. Chem. Phys., 2022, 157, 24103.
DOI: 10.1063/5.0098330

Homogeneous ice nucleation in an ab initio machine-learning model of water

Pablo M Piaggi, Jack Weis, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2207294119.
DOI: 10.1073/pnas.2207294119

High accuracy neural network interatomic potential for NiTi shape memory alloy

Hao Tang, Yin Zhang, Qing-Jie Li, Haowei Xu, Yuchi Wang, Yunzhi Wang, Ju Li
Acta Materialia, 2022, 238, 118217.
DOI: 10.1016/j.actamat.2022.118217

Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl 2 -NaCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advcd Theory and Sims, 2022, 2200206.
DOI: 10.1002/adts.202200206

Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence

Jun-Zhong Xie, Xu-Yuan Zhou, Dong Luan, Hong Jiang
J. Chem. Theory Comput., 2022, 18, 3795–3804.
DOI: 10.1021/acs.jctc.2c00017

Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

Siddarth K Achar, Jacob J Wardzala, Leonardo Bernasconi, Linfeng Zhang, J Karl Johnson
J. Chem. Theory Comput., 2022, 18, 3593–3606.
DOI: 10.1021/acs.jctc.2c00010

Deep neural network based quantum simulations and quasichemical theory for accurate modeling of molten salt thermodynamics

Yu Shi, Stephen T. Lam, Thomas~L. Beck
Chem. Sci., 2022.
DOI: 10.1039/D2SC02227C

Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning

Qiyu Zeng, Bo Chen, Xiaoxiang Yu, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. B, 2022, 105, 174109.
DOI: 10.1103/PhysRevB.105.174109

Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation

Qingzhao Chu, Kai H Luo, Dongping Chen
J. Phys. Chem. Lett., 2022, 13, 4052–4057.
DOI: 10.1021/acs.jpclett.2c00647

Reaction processes at step edges on S-decorated Cu(111) and Ag(111) surfaces: MD analysis utilizing machine learning derived potentials

Da-Jiang Liu, James W Evans
J. Chem. Phys., 2022, 156, 204106.
DOI: 10.1063/5.0089210

Deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth's outer core conditions

Chao Zhang, Ling Tang, Yang Sun, Kai-Ming Ho, Renata M. Wentzcovitch, Cai-Zhuang Wang
Phys. Rev. Materials, 2022, 6, 63802.
DOI: 10.1103/PhysRevMaterials.6.063802

Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

Hiroya Nakata, Michael Filatov Gulak, Cheol Ho Choi
ACS Appl. Mater. Interfaces, 2022, 14, 26116–26127.
DOI: 10.1021/acsami.2c01768

Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air-Water Interfaces Depend on Depth and on Interface Specific Area

Miguel de la Puente, Rolf David, Axel Gomez, Damien Laage
J. Am. Chem. Soc., 2022, 144, 10524–10529.
DOI: 10.1021/jacs.2c03099

Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu 7 PSe 6

Mayanak K. Gupta, Jingxuan Ding, Dipanshu Bansal, Douglas L. Abernathy, Georg Ehlers, Naresh C. Osti, Wolfgang G. Zeier, Olivier Delaire
Advanced Energy Materials, 2022, 12, 2200596.
DOI: 10.1002/aenm.202200596

Atomistic Calculation of the Melting Point of the High-Entropy Cantor Alloy CoCrFeMnNi

I. A. Balyakin, A. A. Rempel
Dokl Phys Chem, 2022, 502, 11–17.
DOI: 10.1134/S0012501622010018

Deep potential development of transition-metal-rich carbides

Tyler McGilvry-James, Bikash Timalsina, Marium Mostafiz Mou, Ridwan Sakidja
MRS Advances, 2022, 7, 468–473.
DOI: 10.1557/s43580-022-00289-0

Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

Pinghui Mo, Chang Li, Dan Zhao, Yujia Zhang, Mengchao Shi, Junhua Li, Jie Liu
npj Comput Mater, 2022, 8, 107.
DOI: 10.1038/s41524-022-00773-z

Dissolving salt is not equivalent to applying a pressure on water

Chunyi Zhang, Shuwen Yue, Athanassios Z Panagiotopoulos, Michael L Klein, Xifan Wu
Nat. Commun., 2022, 13, 822.
DOI: 10.1038/s41467-022-28538-8

Exploring the Effects of Ionic Defects on the Stability of CsPbI 3 with a Deep Learning Potential

Weijie Yang, Jiajia Li, Xuelu Chen, Yajun Feng, Chongchong Wu, Ian D Gates, Zhengyang Gao, Xunlei Ding, Jianxi Yao, Hao Li
Chemphyschem, 2022, 23, e202100841.
DOI: 10.1002/cphc.202100841

Structural phase transitions in $\mathrmSrTi\mathrmO_3$ from deep potential molecular dynamics

Ri He, Hongyu Wu, Linfeng Zhang, Xiaoxu Wang, Fangjia Fu, Shi Liu, Zhicheng Zhong
Phys. Rev. B, 2022, 105, 064104.
DOI: 10.1103/PhysRevB.105.064104

Efficient and accurate atomistic modeling of dopant migration using deep neural network

Xi Ding, Ming Tao, Junhua Li, Mingyuan Li, Mengchao Shi, Jiashu Chen, Zhen Tang, Francis Benistant, Jie Liu
Materials Science in Semiconductor Processing, 2022, 143, 106513.
DOI: 10.1016/j.mssp.2022.106513

Self-Healing Mechanism of Lithium in Lithium Metal

Junyu Jiao, Genming Lai, Liang Zhao, Jiaze Lu, Qidong Li, Xianqi Xu, Yao Jiang, Yan-Bing He, Chuying Ouyang, Feng Pan, Hong Li, Jiaxin Zheng
Adv. Sci. (Weinh)., 2022, 9, e2105574.
DOI: 10.1002/advs.202105574

A deep learning interatomic potential developed for atomistic simulation of carbon materials

Jinjin Wang, Hong Shen, Riyi Yang, Kun Xie, Chao Zhang, Liangyao Chen, Kai-Ming Ho, Cai-Zhuang Wang, Songyou Wang
Carbon, 2022, 186, 1–8.
DOI: 10.1016/j.carbon.2021.09.062

Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

Manyi Yang, Luigi Bonati, Daniela Polino, Michele Parrinello
Catalysis Today, 2022, 387, 143–149.
DOI: 10.1016/j.cattod.2021.03.018

Development of neural network potential for MD simulation and its application to TiN

Takeru Miyagawa, Kazuki Mori, Nobuhiko Kato, Akio Yonezu
Computational Materials Science, 2022, 206, 111303.
DOI: 10.1016/j.commatsci.2022.111303

Ab Initio Neural Network MD Simulation of Thermal Decomposition of High Energy Material CL-20/TNT

Liqun Cao, Jinzhe Zeng, Bo Wang, Tong Zhu, John Z.H. Zhang
Phys. Chem. Chem. Phys., 2022, 24, 11801–11811.
DOI: 10.1039/D2CP00710J

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

Paolo Pegolo, Stefano Baroni, Federico Grasselli
npj Comput Mater, 2022, 8, 24.
DOI: 10.1038/s41524-021-00693-4

Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2022, 123, 26-33.
DOI: 10.1016/j.jmst.2021.12.074

The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12

Zhong-Heng Fu, Xiang Chen, Nan Yao, Xin Shen, Xia-Xia Ma, Shuai Feng, Shuhao Wang, Rui Zhang, Linfeng Zhang, Qiang Zhang
Journal of Energy Chemistry, 2022, 70, 59–66.
DOI: 10.1016/j.jechem.2022.01.018

Study on the structural properties of refining slags by molecular dynamics with deep learning potential

Yuhan Sun, Min Tan, Tao Li, Junguo Li, Bo Shang
Journal of Molecular Liquids, 2022, 353, 118787.
DOI: 10.1016/j.molliq.2022.118787

Nanotwinning induced decreased lattice thermal conductivity of high temperature thermoelectric boron subphosphide (B12P2) from deep learning potential simulations

Xiaona Huang, Yidi Shen, Qi An
Energy and AI, 2022, 8, 100135.
DOI: 10.1016/j.egyai.2022.100135

A deep potential model with long-range electrostatic interactions

Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, Weinan E
J. Chem. Phys., 2022, 156, 124107.
DOI: 10.1063/5.0083669

Four-Phonon Scattering Effect and Two-Channel Thermal Transport in Two-Dimensional Paraelectric SnSe

Jie Sun, Cunzhi Zhang, Zhonghua Yang, Yiheng Shen, Ming Hu, Qian Wang
ACS Appl. Mater. Interfaces, 2022, 14, 11493–11499.
DOI: 10.1021/acsami.1c24488

An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds

Yanqiang Han, Zhilong Wang, An Chen, Imran Ali, Junfei Cai, Simin Ye, Jinjin Li
Brief. Bioinform., 2022, 23.
DOI: 10.1093/bib/bbab590

Sulfur-enhanced dynamics of coinage metal(111) surfaces: Step edges versus terraces as locations for metal-sulfur complex formation

Da-Jiang Liu, James W. Evans
Journal of Vacuum Science \& Technology A, 2022, 40 (2), 023205.
DOI: 10.1116/6.0001408

A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion

YiNan Wang, LinFeng Zhang, Ben Xu, XiaoYang Wang, Han Wang
Modelling Simul. Mater. Sci. Eng., 2022, 30, 25003.
DOI: 10.1088/1361-651X/ac4002

Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability

R.E. Ryltsev, N.M. Chtchelkatchev
Journal of Molecular Liquids, 2022, 349, 118181.
DOI: 10.1016/j.molliq.2021.118181

Neural network potential for Zr-Rh system by machine learning

Kun Xie, Chong Qiao, Hong Shen, Riyi Yang, Ming Xu, Chao Zhang, Yuxiang Zheng, Rongjun Zhang, Liangyao Chen, Kai-Ming Ho, Cai-Zhuang Wang, Songyou Wang
J. Phys. Condens. Matter, 2022, 34, 75402.
DOI: 10.1088/1361-648X/ac37dc

Molecular dynamics simulation of molten strontium chloride based on deep potential

Di Guo, Jia Zhao, Wenshuo Liang, Guimin Lu
Journal of Molecular Liquids, 2022, 348, 118380.
DOI: 10.1016/j.molliq.2021.118380

Suppression of Rayleigh Scattering in Silica Glass by Codoping Boron and Fluorine: Molecular Dynamics Simulations with Force-Matching and Neural Network Potentials

Shingo Urata, Nobuhiro Nakamura, Tomofumi Tada, Aik Rui Tan, Rafael Gómez-Bombarelli, Hideo Hosono
J. Phys. Chem. C, 2022, 126 (4), 2264-2275.
DOI: 10.1021/acs.jpcc.1c10300

A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates

Yang Zhou, Haojie Zheng, Weihuan Li, Tao Ma, Changwen Miao
Cement and Concrete Research, 2022, 152, 106685.
DOI: 10.1016/j.cemconres.2021.106685

Deep learning potential for superionic phase of Ag2S

I.A. Balyakin, S.I. Sadovnikov
Computational Materials Science, 2022, 202, 110963.
DOI: 10.1016/j.commatsci.2021.110963

Neural network representation of electronic structure from ab initio molecular dynamics

Qiangqiang Gu, Linfeng Zhang, Ji Feng
Science Bulletin, 2022, 67, 29–37.
DOI: 10.1016/j.scib.2021.09.010

2021

Machine learning builds full-QM precision protein force fields in seconds

Yanqiang Han, Zhilong Wang, Zhiyun Wei, Jinyun Liu, Jinjin Li
Brief. Bioinform., 2021, 22.
DOI: 10.1093/bib/bbab158

Efficiently Trained Deep Learning Potential for Graphane

Siddarth K. Achar, Linfeng Zhang, J. Karl Johnson
J. Phys. Chem. C, 2021, 125, 14874–14882.
DOI: 10.1021/acs.jpcc.1c01411

2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation

Huayu Chen, Junxiang Chen, Pei Ning, Xin Chen, Junhui Liang, Xin Yao, Da Chen, Laishun Qin, Yuexiang Huang, Zhenhai Wen
ACS Nano, 2021, 15, 12418–12428.
DOI: 10.1021/acsnano.1c04715

Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, Weinan E
J. Chem. Phys., 2021, 154, 94703.
DOI: 10.1063/5.0041849

Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions

Xiaoliang Pan, Junjie Yang, Richard Van, Evgeny Epifanovsky, Junming Ho, Jing Huang, Jingzhi Pu, Ye Mei, Kwangho Nam, Yihan Shao
J. Chem. Theory Comput., 2021, 17, 5745–5758.
DOI: 10.1021/acs.jctc.1c00565

Accurate force field of two-dimensional ferroelectrics from deep learning

Jing Wu, Liyi Bai, Jiawei Huang, Liyang Ma, Jian Liu, Shi Liu
Phys. Rev. B, 2021, 104, 174107.
DOI: 10.1103/PhysRevB.104.174107

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy Fuels, 2021, 35, 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

Jinzhe Zeng, Timothy J Giese, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2021, 17, 6993–7009.
DOI: 10.1021/acs.jctc.1c00201

Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes

Mirza Galib, David T Limmer
Science, 2021, 371, 921–925.
DOI: 10.1126/science.abd7716

86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

Insights from Computational Studies on the Anisotropic Volume Change of LixNiO2 at High States of Charge (x < 0.25)

Juan C. Garcia, Joshua Gabriel, Noah H. Paulson, John Low, Marius Stan, Hakim Iddir
J. Phys. Chem. C, 2021, 125 (49), 27130-27139.
DOI: 10.1021/acs.jpcc.1c08022

Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials

Alejandro Rodriguez, Stephen Lam, Ming Hu
ACS Appl. Mater. Interfaces, 2021, 13, 55367–55379.
DOI: 10.1021/acsami.1c17942

Heat transport in liquid water from first-principles and deep neural network simulations

Davide Tisi, Linfeng Zhang, Riccardo Bertossa, Han Wang, Roberto Car, Stefano Baroni
Phys. Rev. B, 2021, 104, 224202.
DOI: 10.1103/PhysRevB.104.224202

Specialising neural network potentials for accurate properties and application to the mechanical response of titanium

Tongqi Wen, Rui Wang, Lingyu Zhu, Linfeng Zhang, Han Wang, David J. Srolovitz, Zhaoxuan Wu
npj Comput Mater, 2021, 7, 206.
DOI: 10.1038/s41524-021-00661-y

Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4

Mayanak K. Gupta, Jingxuan Ding, Naresh C. Osti, Douglas L. Abernathy, William Arnold, Hui Wang, Zachary Hood, Olivier Delaire
Energy Environ. Sci., 2021, 14, 6554-6563.
DOI: 10.1039/D1EE01509E

Experimental observation of localized interfacial phonon modes

Zhe Cheng, Ruiyang Li, Xingxu Yan, Glenn Jernigan, Jingjing Shi, Michael E Liao, Nicholas J Hines, Chaitanya A Gadre, Juan Carlos Idrobo, Eungkyu Lee, Karl D Hobart, Mark S Goorsky, Xiaoqing Pan, Tengfei Luo, Samuel Graham
Nat. Commun., 2021, 12, 6901.
DOI: 10.1038/s41467-021-27250-3

Artificial intelligence model for efficient simulation of monatomic phase change material antimony

Mengchao Shi, Junhua Li, Ming Tao, Xin Zhang, Jie Liu
Materials Science in Semiconductor Processing, 2021, 136, 106146.
DOI: 10.1016/j.mssp.2021.106146

Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential

L Tang, K M Ho, C Z Wang
J. Chem. Phys., 2021, 155, 194503.
DOI: 10.1063/5.0066061

Choosing the right molecular machine learning potential

Max Pinheiro Jr, Fuchun Ge, Nicolas Ferr'e, Pavlo O Dral, Mario Barbatti
Chem. Sci., 2021, 12, 14396–14413.
DOI: 10.1039/d1sc03564a

Atomic structure of liquid refractory Nb5Si3 intermetallic compound alloy based upon deep neural network potential

Q. Wang, B. Zhai, H. P. Wang, B. Wei
Journal of Applied Physics, 2021, 130, 185103.
DOI: 10.1063/5.0067157

Azo(xy) vs Aniline Selectivity in Catalytic Nitroarene Reduction by Intermetallics: Experiments and Simulations

Carena L. Daniels, Da-Jiang Liu, Marquix A. S. Adamson, Megan Knobeloch, Javier Vela
J. Phys. Chem. C, 2021, 125 (44), 24440-24450.
DOI: 10.1021/acs.jpcc.1c08569

Resolving the Structural Debate for the Hydrated Excess Proton in Water

Paul B Calio, Chenghan Li, Gregory A Voth
J. Am. Chem. Soc., 2021, 143, 18672–18683.
DOI: 10.1021/jacs.1c08552

Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
AIP Advances, 2021, 11, 15043.
DOI: 10.1063/5.0036298

Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning

Dingming Chen, Zhuangzhuang Lai, Jiawei Zhang, Jianfu Chen, Peijun Hu, Haifeng Wang
Chin. J. Chem., 2021, 39, 3029–3036.
DOI: 10.1002/cjoc.202100352

Condensed Phase Water Molecular Multipole Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data

Yu Shi, Carrie C Doyle, Thomas L Beck
J. Phys. Chem. Lett., 2021, 12, 10310–10317.
DOI: 10.1021/acs.jpclett.1c02328

Learning intermolecular forces at liquid-vapor interfaces

Samuel P Niblett, Mirza Galib, David T Limmer
J. Chem. Phys., 2021, 155, 164101.
DOI: 10.1063/5.0067565

Modeling Liquid Water by Climbing up Jacob\textquoterights Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials

Chunyi Zhang, Fujie Tang, Mohan Chen, Jianhang Xu, Linfeng Zhang, Diana Y Qiu, John P Perdew, Michael L Klein, Xifan Wu
J. Phys. Chem. B, 2021, 125, 11444–11456.
DOI: 10.1021/acs.jpcb.1c03884

Deep Density: Circumventing the Kohn-Sham equations via symmetry preserving neural networks

Leonardo Zepeda-N'u\~nez, Yixiao Chen, Jiefu Zhang, Weile Jia, Linfeng Zhang, Lin Lin
Journal of Computational Physics, 2021, 443, 110523.
DOI: 10.1016/j.jcp.2021.110523

First-principles materials simulation and design for alkali and alkaline metal ion batteries accelerated by machine learning

Lujie Jin, Yujin Ji, Hongshuai Wang, Lifeng Ding, Youyong Li
Phys. Chem. Chem. Phys., 2021, 23, 21470–21483.
DOI: 10.1039/d1cp02963k

Local structure elucidation and properties prediction on KCl-CaCl2 molten salt: A deep potential molecular dynamics study

Min Bu, Wenshuo Liang, Guimin Lu, Jianguo Yu
Solar Energy Materials and Solar Cells, 2021, 232, 111346.
DOI: 10.1016/j.solmat.2021.111346

Using Neural Network Force Fields to Ascertain the Quality of Ab Initio Simulations of Liquid Water

Alberto Torres, Luana S Pedroza, Marivi Fernandez-Serra, Alexandre R Rocha
J. Phys. Chem. B, 2021, 125, 10772–10778.
DOI: 10.1021/acs.jpcb.1c04372

Thermal Conductivity of Silicate Liquid Determined by Machine Learning Potentials

Jie Deng, Lars Stixrude
Geophys Res Lett, 2021, 48, e2021GL093806.
DOI: 10.1029/2021GL093806

Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter

Qiyu Zeng, Xiaoxiang Yu, Yunpeng Yao, Tianyu Gao, Bo Chen, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. Research, 2021, 3, 33116.
DOI: 10.1103/PhysRevResearch.3.033116

Liquid-Liquid Critical Point in Phosphorus

Manyi Yang, Tarak Karmakar, Michele Parrinello
Phys. Rev. Lett., 2021, 127, 80603.
DOI: 10.1103/PhysRevLett.127.080603

Robust, Multi-Length-Scale, Machine Learning Potential for Ag–Au Bimetallic Alloys from Clusters to Bulk Materials

Christopher M. Andolina, Marta Bon, Daniele Passerone, Wissam A. Saidi
J. Phys. Chem. C, 2021, 125 (31), 17438-17447.
DOI: 10.1021/acs.jpcc.1c04403

Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential

Md Sabbir Akhanda, S Emad Rezaei, Keivan Esfarjani, Sergiy Krylyuk, Albert V Davydov, Mona Zebarjadi
Phys. Rev. Mater., 2021, 5, 83804.
DOI: 10.1103/PhysRevMaterials.5.083804

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO 3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophys Res Lett, 2021, 48.
DOI: 10.1029/2021GL093573

Deep neural network potentials for diffusional lithium isotope fractionation in silicate melts

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geochimica et Cosmochimica Acta, 2021, 303, 38–50.
DOI: 10.1016/j.gca.2021.03.031

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2021, 126, 236001.
DOI: 10.1103/PhysRevLett.126.236001

Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials

Wenshuo Liang, Guimin Lu, Jianguo Yu
Journal of Materials Science & Technology, 2021, 75, 78-85.
DOI: 10.1016/j.jmst.2020.09.040

The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10.1016/j.mtener.2021.100665

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M Piaggi, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
J. Chem. Theory Comput., 2021, 17, 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential

Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2021, 72, 8-15.
DOI: 10.1016/j.jmst.2020.07.014

Theoretical prediction on the redox potentials of rare-earth ions by deep potentials

Jia Zhao, Wenshuo Liang, Guimin Lu
Ionics, 2021, 27, 2079–2088.
DOI: 10.1007/s11581-021-03988-0

Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space*

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Phys. B, 2021, 30, 50706.
DOI: 10.1088/1674-1056/abf134

Anharmonic Raman spectra simulation of crystals from deep neural networks

Honghui Shang, Haidi Wang
AIP Advances, 2021, 11, 35105.
DOI: 10.1063/5.0040190

Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study

Qianrui Liu, Junyi Li, Mohan Chen
Matter and Radiation at Extremes, 2021, 6 (2), 026902.
DOI: 10.1063/5.0030123

Crystallization of the P3Sn4 Phase upon Cooling P2Sn5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential

Chao Zhang, Yang Sun, Hai-Di Wang, Feng Zhang, Tong-Qi Wen, Kai-Ming Ho, Cai-Zhuang Wang
J. Phys. Chem. C, 2021, 125 (5), 3127-3133.
DOI: 10.1021/acs.jpcc.0c08873

Enhancing the formation of ionic defects to study the ice Ih/XI transition with molecular dynamics simulations

Pablo M. Piaggi, Roberto Car
Molecular Physics, 2021, 119.
DOI: 10.1080/00268976.2021.1916634

Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature

Chenghan Li, Francesco Paesani, Gregory A Voth
J. Chem. Theory Comput., 2022, 18, 2124–2131.
DOI: 10.1021/acs.jctc.1c01223

Molecular dynamics simulations of lanthanum chloride by deep learning potential

Taixi Feng, Jia Zhao, Wenshuo Liang, Guimin Lu
Computational Materials Science, 2021, 111014.
DOI: 10.1016/j.commatsci.2021.111014

Diffusional fractionation of helium isotopes in silicate melts

H. Luo, B.B. Karki, D.B. Ghosh, H. Bao
Geochem. Persp. Let., 2021, 19–22.
DOI: 10.7185/geochemlet.2128

Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases

L. Tang, Z.J. Yang, T.Q. Wen, K.M. Ho, M.J. Kramer, C.Z. Wang
Acta Materialia, 2021, 204, 116513.
DOI: 10.1016/j.actamat.2020.116513

A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP

Gechuanqi Pan, Jing Ding, Yunfei Du, Duu-Jong Lee, Yutong Lu
Computational Materials Science, 2021, 187, 110055.
DOI: 10.1016/j.commatsci.2020.110055

Deep learning of accurate force field of ferroelectricHfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Phys. Rev. B, 2021, 103, 24108.
DOI: 10.1103/PhysRevB.103.024108

Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2-KCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
ACS Appl. Mater. Interfaces, 2021, 13, 4034–4042.
DOI: 10.1021/acsami.0c20665

Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorg. Chem. Front., 2021, 8, 425–432.
DOI: 10.1039/D0QI00921K

When do short-range atomistic machine-learning models fall short?

Shuwen Yue, Maria Carolina Muniz, Marcos F Calegari Andrade, Linfeng Zhang, Roberto Car, Athanassios Z Panagiotopoulos
J. Chem. Phys., 2021, 154, 34111.
DOI: 10.1063/5.0031215

2020

Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics

Marcos F Calegari Andrade, Hsin-Yu Ko, Linfeng Zhang, Roberto Car, Annabella Selloni
Chem. Sci., 2020, 11, 2335–2341.
DOI: 10.1039/C9SC05116C

Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2020, 43, 168–174.
DOI: 10.1016/j.jmst.2020.01.005

A deep neural network interatomic potential for studying thermal conductivity of $\beta$-Ga2O3

Ruiyang Li, Zeyu Liu, Andrew Rohskopf, Kiarash Gordiz, Asegun Henry, Eungkyu Lee, Tengfei Luo
Appl. Phys. Lett., 2020, 117, 152102.
DOI: 10.1063/5.0025051

Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential

Qianrui Liu, Denghui Lu, Mohan Chen
J. Phys. Condens. Matter, 2020, 32, 144002.
DOI: 10.1088/1361-648X/ab5890

Ab initio phase diagram and nucleation of gallium

Haiyang Niu, Luigi Bonati, Pablo M Piaggi, Michele Parrinello
Nat. Commun., 2020, 11, 2654.
DOI: 10.1038/s41467-020-16372-9

Raman spectrum and polarizability of liquid water from deep neural networks

Grace M Sommers, Marcos F Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Phys. Chem. Chem. Phys., 2020, 22, 10592–10602.
DOI: 10.1039/D0CP01893G

A machine learning based deep potential for seeking the low-lying candidates of Al clusters

P Tuo, X B Ye, B C Pan
J. Chem. Phys., 2020, 152, 114105.
DOI: 10.1063/5.0001491

Data-driven coarse-grained modeling of polymers in solution with structural and dynamic properties conserved

Shu Wang, Zhan Ma, Wenxiao Pan
Soft Matter, 2020, 16, 8330–8344.
DOI: 10.1039/D0SM01019G

Complex reaction processes in combustion unraveled by neural network- based molecular dynamics simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z H Zhang
Nat. Commun., 2020, 11, 5713.
DOI: 10.1038/s41467-020-19497-z

Deep neural network for the dielectric response of insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, Weinan E, Roberto Car
Phys. Rev. B, 2020, 102, 41121.
DOI: 10.1103/PhysRevB.102.041121

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Phys. Rev. B, 2020, 102, 214113.
DOI: 10.1103/PhysRevB.102.214113

Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations

Carla Andreani, Giovanni Romanelli, Alexandra Parmentier, Roberto Senesi, Alexander I Kolesnikov, Hsin-Yu Ko, Marcos F Calegari Andrade, Roberto Car
J. Phys. Chem. Lett., 2020, 11, 9461–9467.
DOI: 10.1021/acs.jpclett.0c02547

A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases

R. Li, E. Lee, T. Luo
Materials Today Physics, 2020, 12, 100181.
DOI: 10.1016/j.mtphys.2020.100181

Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy

Zhilong Wang, Yanqiang Han, Jinjin Li, Xiao He
J. Phys. Chem. B, 2020, 124, 3027–3035.
DOI: 10.1021/acs.jpcb.0c01370

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
J. Phys. Chem. C, 2020, 124, 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Development of interatomic potential for Al-Tb alloys using a deep neural network learning method

L Tang, Z J Yang, T Q Wen, K M Ho, M J Kramer, C Z Wang
Phys. Chem. Chem. Phys., 2020, 22, 18467–18479.
DOI: 10.1039/D0CP01689F

Isotope effects in x-ray absorption spectra of liquid water

Chunyi Zhang, Linfeng Zhang, Jianhang Xu, Fujie Tang, Biswajit Santra, Xifan Wu
Phys. Rev. B, 2020, 102, 115155.
DOI: 10.1103/PhysRevB.102.115155

Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics

Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen
Physics of Plasmas, 2020, 27, 122704.
DOI: 10.1063/5.0023265

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine-Learning-Based Deep Potential

Wenshuo Liang, Guimin Lu, Jianguo Yu
Adv. Theory Simul., 2020, 3, 2000180.
DOI: 10.1002/adts.202000180

Grain boundary strengthening in ZrB2 by segregation of W: Atomistic simulations with deep learning potential

Fu-Zhi Dai, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of the European Ceramic Society, 2020, 40, 5029–5036.
DOI: 10.1016/j.jeurceramsoc.2020.06.007

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Front. Chem., 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Deep machine learning interatomic potential for liquid silica

I A Balyakin, S V Rempel, R E Ryltsev, A A Rempel
Phys. Rev. E, 2020, 102, 52125.
DOI: 10.1103/PhysRevE.102.052125

Structure of disorderedTiO2phases from ab initio based deep neural network simulations

Marcos F. Calegari Andrade, Annabella Selloni
Phys. Rev. Materials, 2020, 4, 113803.
DOI: 10.1103/PhysRevMaterials.4.113803

Signatures of a liquid-liquid transition in an ab initio deep neural network model for water

Thomas E Gartner 3rd, Linfeng Zhang, Pablo M Piaggi, Roberto Car, Athanassios Z Panagiotopoulos, Pablo G Debenedetti
Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 26040–26046.
DOI: 10.1073/pnas.2015440117

2019

Active learning of uniformly accurate interatomic potentials for materials simulation

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, Weinan E
Phys. Rev. Materials, 2019, 3, 23804.
DOI: 10.1103/PhysRevMaterials.3.023804

Isotope effects in liquid water via deep potential molecular dynamics

Hsin-Yu Ko, Linfeng Zhang, Biswajit Santra, Han Wang, Weinan E, Robert A. DiStasio Jr, Roberto Car
Molecular Physics, 2019, 117, 3269–3281.
DOI: 10.1080/00268976.2019.1652366

Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds

Tongqi Wen, Cai-Zhuang Wang, M. J. Kramer, Yang Sun, Beilin Ye, Haidi Wang, Xueyuan Liu, Chao Zhang, Feng Zhang, Kai-Ming Ho, Nan Wang
Phys. Rev. B, 2019, 100, 174101.
DOI: 10.1103/PhysRevB.100.174101

Deep learning inter-atomic potential model for accurate irradiation damage simulations

Hao Wang, Xun Guo, Linfeng Zhang, Han Wang, Jianming Xue
Appl. Phys. Lett., 2019, 114, 244101.
DOI: 10.1063/1.5098061

2018

Silicon Liquid Structure and Crystal Nucleation from Ab~Initio Deep Metadynamics

Luigi Bonati, Michele Parrinello
Phys. Rev. Lett., 2018, 121, 265701.
DOI: 10.1103/PhysRevLett.121.265701

Deep Learning for Nonadiabatic Excited-State Dynamics

Wen-Kai Chen, Xiang-Yang Liu, Wei-Hai Fang, Pavlo O Dral, Ganglong Cui
J. Phys. Chem. Lett., 2018, 9, 6702–6708.
DOI: 10.1021/acs.jpclett.8b03026

Adaptive coupling of a deep neural network potential to a classical force field

Linfeng Zhang, Han Wang, Weinan E
J. Chem. Phys., 2018, 149, 154107.
DOI: 10.1063/1.5042714

DeePCG: Constructing coarse-grained models via deep neural networks

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E
J. Chem. Phys., 2018, 149, 34101.
DOI: 10.1063/1.5027645

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

Han Wang, Linfeng Zhang, Jiequn Han, Weinan E
Computer Physics Communications, 2018, 228, 178–184.
DOI: 10.1016/j.cpc.2018.03.016

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2018, 120, 143001.
DOI: 10.1103/PhysRevLett.120.143001

0%
\ No newline at end of file +Publications driven by DeePMD-kit | DeepModeling

DeepModeling

Define the future of scientific computing together

Publications driven by DeePMD-kit

The following publications have used the DeePMD-kit software. Publications that only mentioned the DeePMD-kit will not be included below.

2023

Grain boundaries induce significant decrease in lattice thermal conductivity of CdTe

Xiaona Huang, Kun Luo, Yidi Shen, Yanan Yue, Qi An
Energy and AI, 2023, 11, 100210.
DOI: 10.1016/j.egyai.2022.100210

Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field

Yulong Ling, Kun Li, Mi Wang, Junfeng Lu, Chenlu Wang, Yanlei Wang, Hongyan He
Journal of Power Sources, 2023, 555, 232350.
DOI: 10.1016/j.jpowsour.2022.232350

Quasiplastic deformation in shocked nanocrystalline boron carbide: Grain boundary sliding and local amorphization

Jun Li, Qi An
Journal of the European Ceramic Society, 2023, 43, 208–216.
DOI: 10.1016/j.jeurceramsoc.2022.10.014

Accurate Fe-He machine learning potential for studying He effects in BCC-Fe

Krishna Chaitanya Pitike, Wahyu Setyawan
Journal of Nuclear Materials, 2023, 574, 154183.
DOI: 10.1016/j.jnucmat.2022.154183

Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics

Jianchuan Liu, Renxi Liu, Yu Cao, Mohan Chen
Phys. Chem. Chem. Phys., 2023.
DOI: 10.1039/d2cp04105g

Grain boundary sliding and distortion on a nanosecond timescale induce trap states in CsPbBr3: ab initio investigation with machine learning force field

Dongyu Liu, Yifan Wu, Andrey S Vasenko, Oleg V Prezhdo
Nanoscale, 2023, 15, 285–293.
DOI: 10.1039/d2nr05918e

Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method

B. Zhai, H.P. Wang
Computational Materials Science, 2023, 216, 111843.
DOI: 10.1016/j.commatsci.2022.111843

2022

Modeling Chemical Reactions in Alkali Carbonate-Hydroxide Electrolytes with Deep Learning Potentials

Anirban Mondal, Dina Kussainova, Shuwen Yue, Athanassios Z Panagiotopoulos
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00816

Spatial arrangement of dynamic surface species from solid-state NMR and machine learning-accelerated MD simulations

Takeshi Kobayashi, Da-Jiang Liu, Fr'ed'eric A Perras
Chem. Commun. (Camb)., 2022, 58, 13939–13942.
DOI: 10.1039/d2cc05861h

Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis

Yifan Wu, Dongyu Liu, Weibin Chu, Bipeng Wang, Andrey S Vasenko, Oleg V Prezhdo
ACS Appl. Mater. Interfaces, 2022, 14, 55753–55761.
DOI: 10.1021/acsami.2c16203

Modeling Short-Range and Three-Membered Ring Structures in Lithium Borosilicate Glasses Using a Machine-Learning Potential

Shingo Urata
J. Phys. Chem. C, 2022, 126, 21507–21517.
DOI: 10.1021/acs.jpcc.2c07597

Lattice Thermal Conductivity of MgSiO3 Perovskite and Post- Perovskite under Lower Mantle Conditions Calculated by Deep Potential Molecular Dynamics

Fenghu Yang, Qiyu Zeng, Bo Chen, Dongdong Kang, Shen Zhang, Jianhua Wu, Xiaoxiang Yu, Jiayu Dai
Chinese Phys. Lett., 2022, 39, 116301.
DOI: 10.1088/0256-307X/39/11/116301

Origin of the herringbone reconstruction of Au(111) surface at the atomic scale

Pai Li, Feng Ding
Sci. Adv., 2022, 8, eabq2900.
DOI: 10.1126/sciadv.abq2900

Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics

Yong-Bin Zhuang, Rui-Hao Bi, Jun Cheng
J. Chem. Phys., 2022, 157, 164701.
DOI: 10.1063/5.0126333

Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles

Marco Fronzi, Roger D Amos, Rika Kobayashi, Naoki Matsumura, Kenta Watanabe, Rafael K Morizawa
Nanomaterials (Basel)., 2022, 12, 3891.
DOI: 10.3390/nano12213891

Predicted superconductivity and superionic state in the electride Li5N under high pressure

Zhongyu Wan, Chao Zhang, Tianyi Yang, Wenjun Xu, Ruiqin Zhang
New J. Phys., 2022, 24, 113012.
DOI: 10.1088/1367-2630/ac9cff

Origin of negative thermal expansion and pressure-induced amorphization in zirconium tungstate from a machine-learning potential

Ri He, Hongyu Wu, Yi Lu, Zhicheng Zhong
Phys. Rev. B, 2022, 106, 174101.
DOI: 10.1103/PhysRevB.106.174101

Phonon Thermal Transport inBi2Te3from a Deep-Neural-Network Interatomic Potential

Robert D McMichael, Sean M Blakley
Phys. Rev. Appl., 2022, 18, 54022.
DOI: 10.1103/PhysRevApplied.18.054022

Piezo- and Pyroelectricity in Zirconia: A Study with Machine-Learned Force Fields

Robert D McMichael, Sean M Blakley
Phys. Rev. Appl., 2022, 18, 54066.
DOI: 10.1103/PhysRevApplied.18.054066

Classical and machine learning interatomic potentials for BCC vanadium

Rui Wang, Xiaoxiao Ma, Linfeng Zhang, Han Wang, David J. Srolovitz, Tongqi Wen, Zhaoxuan Wu
Phys. Rev. Materials, 2022, 6, 113603.
DOI: 10.1103/PhysRevMaterials.6.113603

Order of magnitude reduction in Joule heating of single molecular junctions between graphene electrodes

Gen Li, Bing-Zhong Hu, Wen-Hao Mao, Nuo Yang, Jing-Tao L"u
J. Chem. Phys., 2022, 157, 174303.
DOI: 10.1063/5.0118952

Plastic deformation of superionic water ices

Filipe Matusalem, J'essica Santos Rego, Maurice de Koning
Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2203397119.
DOI: 10.1073/pnas.2203397119

Metal Affinity of Support Dictates Sintering of Gold Catalysts

Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li
J. Am. Chem. Soc., 2022, 144, 20601–20609.
DOI: 10.1021/jacs.2c06785

Multireference Generalization of the Weighted Thermodynamic Perturbation Method

Timothy J Giese, Jinzhe Zeng, Darrin M York
J. Phys. Chem. A, 2022, 126, 8519–8533.
DOI: 10.1021/acs.jpca.2c06201

Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning

Dong Wang, Zhongqing Wu, Xin Deng
Geophysical Research Letters, 2022, 49.
DOI: 10.1029/2022GL100337

DeePKS + ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials

Wenfei Li, Qi Ou, Yixiao Chen, Yu Cao, Renxi Liu, Chunyi Zhang, Daye Zheng, Chun Cai, Xifan Wu, Han Wang, Mohan Chen, Linfeng Zhang
J. Phys. Chem. A, 2022, 126, 9154–9164.
DOI: 10.1021/acs.jpca.2c05000

Centroid Molecular Dynamics Can Be Greatly Accelerated through Neural Network Learned Centroid Forces Derived from Path Integral Molecular Dynamics

Timothy D Loose, Patrick G Sahrmann, Gregory A Voth
J. Chem. Theory Comput., 2022, 18, 5856–5863.
DOI: 10.1021/acs.jctc.2c00706

Moir'e Phonons in Magic-Angle Twisted Bilayer Graphene

Xiaoqian Liu, Ran Peng, Zhaoru Sun, Jianpeng Liu
Nano Lett., 2022, 22, 7791–7797.
DOI: 10.1021/acs.nanolett.2c02010

Modeling the Solvation and Acidity of Carboxylic Acids Using an Ab Initio Deep Neural Network Potential

Abhinav S Raman, Annabella Selloni
J. Phys. Chem. A, 2022, 126, 7283–7290.
DOI: 10.1021/acs.jpca.2c06252

Photoelectron spectra of water and simple aqueous solutions at extreme conditions

Zifan Ye, Cunzhi Zhang, Giulia Galli
Faraday Discuss., 2022, 236, 352–363.
DOI: 10.1039/d2fd00003b

Deep potential for a face-centered cubic Cu system at finite temperatures

Yunzhen Du, Zhaocang Meng, Qiang Yan, Canglong Wang, Yuan Tian, Wenshan Duan, Sheng Zhang, Ping Lin
Phys. Chem. Chem. Phys., 2022, 24, 18361–18369.
DOI: 10.1039/D2CP02758E

Thermal transport properties of monolayer GeS and SnS: A comparative study based on machine learning and SW interatomic potential models

Wentao Li, Chenxiu Yang
AIP Advances, 2022, 12, 85111.
DOI: 10.1063/5.0099448

Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles

Xiaoning Wang, Haidi Wang, Qiquan Luo, Jinlong Yang
J. Chem. Phys., 2022, 157, 74304.
DOI: 10.1063/5.0100505

A Deep Neural Network Interface Potential for Li-Cu Systems

Genming Lai, Junyu Jiao, Chi Fang, Ruiqi Zhang, Xianqi Xu, Liyuan Sheng, Yao Jiang, Chuying Ouyang, Jiaxin Zheng
Adv Materials Inter, 2022, 9, 2201346.
DOI: 10.1002/admi.202201346

Strategy to consider element distribution when constructing training datasets for developing machine learning potentials of alloys based on a Monte-Carlo-like method

Zhipeng Zhang, Liuqing Chen, Junyi Guo, Xianyin Duan, Bin Shan, Xianbao Duan
Phys. Rev. B, 2022, 106, 94107.
DOI: 10.1103/PhysRevB.106.094107

Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution

Timoth'ee Devergne, Th'eo Magrino, Fabio Pietrucci, A Marco Saitta
J. Chem. Theory Comput., 2022, 18, 5410–5421.
DOI: 10.1021/acs.jctc.2c00400

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng, Ke Xu, Eric Lindgren, J Magnus Rahm, Alexander J Gabourie, Jiahui Liu, Haikuan Dong, Jianyang Wu, Yue Chen, Zheng Zhong, Jian Sun, Paul Erhart, Yanjing Su, Tapio Ala-Nissila
J. Chem. Phys., 2022, 157, 114801.
DOI: 10.1063/5.0106617

Magnetocaloric effect in ScGdTbDyHo high-entropy alloy: Impact of synthesis route

S.A. Uporov, S. Kh Estemirova, E.V. Sterkhov, I.A. Balyakin, A.A. Rempel
Intermetallics, 2022, 151, 107678.
DOI: 10.1016/j.intermet.2022.107678

A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment

Xiaoyang Wang, Yinan Wang, Linfeng Zhang, Fuzhi Dai, Han Wang
Nucl. Fusion, 2022, 62, 126013.
DOI: 10.1088/1741-4326/ac888b

Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential

Wei Zhang, Li Zhou, Bin Yang, Tinggui Yan
Journal of Molecular Liquids, 2022, 367, 120500.
DOI: 10.1016/j.molliq.2022.120500

DP Compress: A Model Compression Scheme for Generating Efficient Deep Potential Models

Denghui Lu, Wanrun Jiang, Yixiao Chen, Linfeng Zhang, Weile Jia, Han Wang, Mohan Chen
18, 2022, 5555–5567.
DOI: 10.1021/acs.jctc.2c00102

Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution

Timoth'ee Devergne, Th'eo Magrino, Fabio Pietrucci, A Marco Saitta
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00400

A Deep Neural Network Interface Potential for Li-Cu Systems

Genming Lai, Junyu Jiao, Chi Fang, Ruiqi Zhang, Xianqi Xu, Liyuan Sheng, Yao Jiang, Chuying Ouyang, Jiaxin Zheng
Adv Materials Inter, 2022, 2201346.
DOI: 10.1002/admi.202201346

Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling\textreferencemark

Sen Xu, Liling Wu, Zhenyu Li
Acta Chimica Sinica, 2022, 80, 598.
DOI: 10.6023/A22010003

Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks

Jinfeng Liu, Jinggang Lan, Xiao He
J. Phys. Chem. A, 2022, 126, 3926–3936.
DOI: 10.1021/acs.jpca.2c00601

A Deep Neural Network Potential for Water Confined in Graphene Nanocapillaries

Wen Zhao, Hu Qiu, Wanlin Guo
J. Phys. Chem. C, 2022, 126, 10546–10553.
DOI: 10.1021/acs.jpcc.2c02423

Soft-phonon anharmonicity, floppy modes, and Na diffusion in Na3FY (Y=S,Se,Te): Ab initio and machine-learned molecular dynamics simulations

Mayanak Kumar Gupta, Sajan Kumar, Ranjan Mittal, Samrath L. Chaplot
Phys. Rev. B, 2022, 106, 14311.
DOI: 10.1103/PhysRevB.106.014311

Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions

Timothy J Giese, Jinzhe Zeng, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2022, 18, 4304–4317.
DOI: 10.1021/acs.jctc.2c00151

Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning

Feng Wang, Jun Cheng
J. Chem. Phys., 2022, 157, 24103.
DOI: 10.1063/5.0098330

Homogeneous ice nucleation in an ab initio machine-learning model of water

Pablo M Piaggi, Jack Weis, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2207294119.
DOI: 10.1073/pnas.2207294119

High accuracy neural network interatomic potential for NiTi shape memory alloy

Hao Tang, Yin Zhang, Qing-Jie Li, Haowei Xu, Yuchi Wang, Yunzhi Wang, Ju Li
Acta Materialia, 2022, 238, 118217.
DOI: 10.1016/j.actamat.2022.118217

Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl 2 -NaCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advcd Theory and Sims, 2022, 2200206.
DOI: 10.1002/adts.202200206

Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence

Jun-Zhong Xie, Xu-Yuan Zhou, Dong Luan, Hong Jiang
J. Chem. Theory Comput., 2022, 18, 3795–3804.
DOI: 10.1021/acs.jctc.2c00017

Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

Siddarth K Achar, Jacob J Wardzala, Leonardo Bernasconi, Linfeng Zhang, J Karl Johnson
J. Chem. Theory Comput., 2022, 18, 3593–3606.
DOI: 10.1021/acs.jctc.2c00010

Deep neural network based quantum simulations and quasichemical theory for accurate modeling of molten salt thermodynamics

Yu Shi, Stephen T. Lam, Thomas~L. Beck
Chem. Sci., 2022.
DOI: 10.1039/D2SC02227C

Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning

Qiyu Zeng, Bo Chen, Xiaoxiang Yu, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. B, 2022, 105, 174109.
DOI: 10.1103/PhysRevB.105.174109

Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation

Qingzhao Chu, Kai H Luo, Dongping Chen
J. Phys. Chem. Lett., 2022, 13, 4052–4057.
DOI: 10.1021/acs.jpclett.2c00647

Reaction processes at step edges on S-decorated Cu(111) and Ag(111) surfaces: MD analysis utilizing machine learning derived potentials

Da-Jiang Liu, James W Evans
J. Chem. Phys., 2022, 156, 204106.
DOI: 10.1063/5.0089210

Deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth's outer core conditions

Chao Zhang, Ling Tang, Yang Sun, Kai-Ming Ho, Renata M. Wentzcovitch, Cai-Zhuang Wang
Phys. Rev. Materials, 2022, 6, 63802.
DOI: 10.1103/PhysRevMaterials.6.063802

Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

Hiroya Nakata, Michael Filatov Gulak, Cheol Ho Choi
ACS Appl. Mater. Interfaces, 2022, 14, 26116–26127.
DOI: 10.1021/acsami.2c01768

Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air-Water Interfaces Depend on Depth and on Interface Specific Area

Miguel de la Puente, Rolf David, Axel Gomez, Damien Laage
J. Am. Chem. Soc., 2022, 144, 10524–10529.
DOI: 10.1021/jacs.2c03099

Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu 7 PSe 6

Mayanak K. Gupta, Jingxuan Ding, Dipanshu Bansal, Douglas L. Abernathy, Georg Ehlers, Naresh C. Osti, Wolfgang G. Zeier, Olivier Delaire
Advanced Energy Materials, 2022, 12, 2200596.
DOI: 10.1002/aenm.202200596

Atomistic Calculation of the Melting Point of the High-Entropy Cantor Alloy CoCrFeMnNi

I. A. Balyakin, A. A. Rempel
Dokl Phys Chem, 2022, 502, 11–17.
DOI: 10.1134/S0012501622010018

Deep potential development of transition-metal-rich carbides

Tyler McGilvry-James, Bikash Timalsina, Marium Mostafiz Mou, Ridwan Sakidja
MRS Advances, 2022, 7, 468–473.
DOI: 10.1557/s43580-022-00289-0

Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

Pinghui Mo, Chang Li, Dan Zhao, Yujia Zhang, Mengchao Shi, Junhua Li, Jie Liu
npj Comput Mater, 2022, 8, 107.
DOI: 10.1038/s41524-022-00773-z

Dissolving salt is not equivalent to applying a pressure on water

Chunyi Zhang, Shuwen Yue, Athanassios Z Panagiotopoulos, Michael L Klein, Xifan Wu
Nat. Commun., 2022, 13, 822.
DOI: 10.1038/s41467-022-28538-8

Exploring the Effects of Ionic Defects on the Stability of CsPbI 3 with a Deep Learning Potential

Weijie Yang, Jiajia Li, Xuelu Chen, Yajun Feng, Chongchong Wu, Ian D Gates, Zhengyang Gao, Xunlei Ding, Jianxi Yao, Hao Li
Chemphyschem, 2022, 23, e202100841.
DOI: 10.1002/cphc.202100841

Structural phase transitions in $\mathrmSrTi\mathrmO_3$ from deep potential molecular dynamics

Ri He, Hongyu Wu, Linfeng Zhang, Xiaoxu Wang, Fangjia Fu, Shi Liu, Zhicheng Zhong
Phys. Rev. B, 2022, 105, 064104.
DOI: 10.1103/PhysRevB.105.064104

Efficient and accurate atomistic modeling of dopant migration using deep neural network

Xi Ding, Ming Tao, Junhua Li, Mingyuan Li, Mengchao Shi, Jiashu Chen, Zhen Tang, Francis Benistant, Jie Liu
Materials Science in Semiconductor Processing, 2022, 143, 106513.
DOI: 10.1016/j.mssp.2022.106513

Self-Healing Mechanism of Lithium in Lithium Metal

Junyu Jiao, Genming Lai, Liang Zhao, Jiaze Lu, Qidong Li, Xianqi Xu, Yao Jiang, Yan-Bing He, Chuying Ouyang, Feng Pan, Hong Li, Jiaxin Zheng
Adv. Sci. (Weinh)., 2022, 9, e2105574.
DOI: 10.1002/advs.202105574

A deep learning interatomic potential developed for atomistic simulation of carbon materials

Jinjin Wang, Hong Shen, Riyi Yang, Kun Xie, Chao Zhang, Liangyao Chen, Kai-Ming Ho, Cai-Zhuang Wang, Songyou Wang
Carbon, 2022, 186, 1–8.
DOI: 10.1016/j.carbon.2021.09.062

Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

Manyi Yang, Luigi Bonati, Daniela Polino, Michele Parrinello
Catalysis Today, 2022, 387, 143–149.
DOI: 10.1016/j.cattod.2021.03.018

Development of neural network potential for MD simulation and its application to TiN

Takeru Miyagawa, Kazuki Mori, Nobuhiko Kato, Akio Yonezu
Computational Materials Science, 2022, 206, 111303.
DOI: 10.1016/j.commatsci.2022.111303

Ab Initio Neural Network MD Simulation of Thermal Decomposition of High Energy Material CL-20/TNT

Liqun Cao, Jinzhe Zeng, Bo Wang, Tong Zhu, John Z.H. Zhang
Phys. Chem. Chem. Phys., 2022, 24, 11801–11811.
DOI: 10.1039/D2CP00710J

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

Paolo Pegolo, Stefano Baroni, Federico Grasselli
npj Comput Mater, 2022, 8, 24.
DOI: 10.1038/s41524-021-00693-4

Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2022, 123, 26-33.
DOI: 10.1016/j.jmst.2021.12.074

The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12

Zhong-Heng Fu, Xiang Chen, Nan Yao, Xin Shen, Xia-Xia Ma, Shuai Feng, Shuhao Wang, Rui Zhang, Linfeng Zhang, Qiang Zhang
Journal of Energy Chemistry, 2022, 70, 59–66.
DOI: 10.1016/j.jechem.2022.01.018

Study on the structural properties of refining slags by molecular dynamics with deep learning potential

Yuhan Sun, Min Tan, Tao Li, Junguo Li, Bo Shang
Journal of Molecular Liquids, 2022, 353, 118787.
DOI: 10.1016/j.molliq.2022.118787

Nanotwinning induced decreased lattice thermal conductivity of high temperature thermoelectric boron subphosphide (B12P2) from deep learning potential simulations

Xiaona Huang, Yidi Shen, Qi An
Energy and AI, 2022, 8, 100135.
DOI: 10.1016/j.egyai.2022.100135

A deep potential model with long-range electrostatic interactions

Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, Weinan E
J. Chem. Phys., 2022, 156, 124107.
DOI: 10.1063/5.0083669

Four-Phonon Scattering Effect and Two-Channel Thermal Transport in Two-Dimensional Paraelectric SnSe

Jie Sun, Cunzhi Zhang, Zhonghua Yang, Yiheng Shen, Ming Hu, Qian Wang
ACS Appl. Mater. Interfaces, 2022, 14, 11493–11499.
DOI: 10.1021/acsami.1c24488

An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds

Yanqiang Han, Zhilong Wang, An Chen, Imran Ali, Junfei Cai, Simin Ye, Jinjin Li
Brief. Bioinform., 2022, 23.
DOI: 10.1093/bib/bbab590

Sulfur-enhanced dynamics of coinage metal(111) surfaces: Step edges versus terraces as locations for metal-sulfur complex formation

Da-Jiang Liu, James W. Evans
Journal of Vacuum Science \& Technology A, 2022, 40 (2), 023205.
DOI: 10.1116/6.0001408

A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion

YiNan Wang, LinFeng Zhang, Ben Xu, XiaoYang Wang, Han Wang
Modelling Simul. Mater. Sci. Eng., 2022, 30, 25003.
DOI: 10.1088/1361-651X/ac4002

Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability

R.E. Ryltsev, N.M. Chtchelkatchev
Journal of Molecular Liquids, 2022, 349, 118181.
DOI: 10.1016/j.molliq.2021.118181

Neural network potential for Zr-Rh system by machine learning

Kun Xie, Chong Qiao, Hong Shen, Riyi Yang, Ming Xu, Chao Zhang, Yuxiang Zheng, Rongjun Zhang, Liangyao Chen, Kai-Ming Ho, Cai-Zhuang Wang, Songyou Wang
J. Phys. Condens. Matter, 2022, 34, 75402.
DOI: 10.1088/1361-648X/ac37dc

Molecular dynamics simulation of molten strontium chloride based on deep potential

Di Guo, Jia Zhao, Wenshuo Liang, Guimin Lu
Journal of Molecular Liquids, 2022, 348, 118380.
DOI: 10.1016/j.molliq.2021.118380

Suppression of Rayleigh Scattering in Silica Glass by Codoping Boron and Fluorine: Molecular Dynamics Simulations with Force-Matching and Neural Network Potentials

Shingo Urata, Nobuhiro Nakamura, Tomofumi Tada, Aik Rui Tan, Rafael Gómez-Bombarelli, Hideo Hosono
J. Phys. Chem. C, 2022, 126 (4), 2264-2275.
DOI: 10.1021/acs.jpcc.1c10300

A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates

Yang Zhou, Haojie Zheng, Weihuan Li, Tao Ma, Changwen Miao
Cement and Concrete Research, 2022, 152, 106685.
DOI: 10.1016/j.cemconres.2021.106685

Deep learning potential for superionic phase of Ag2S

I.A. Balyakin, S.I. Sadovnikov
Computational Materials Science, 2022, 202, 110963.
DOI: 10.1016/j.commatsci.2021.110963

Neural network representation of electronic structure from ab initio molecular dynamics

Qiangqiang Gu, Linfeng Zhang, Ji Feng
Science Bulletin, 2022, 67, 29–37.
DOI: 10.1016/j.scib.2021.09.010

2021

Machine learning builds full-QM precision protein force fields in seconds

Yanqiang Han, Zhilong Wang, Zhiyun Wei, Jinyun Liu, Jinjin Li
Brief. Bioinform., 2021, 22.
DOI: 10.1093/bib/bbab158

Efficiently Trained Deep Learning Potential for Graphane

Siddarth K. Achar, Linfeng Zhang, J. Karl Johnson
J. Phys. Chem. C, 2021, 125, 14874–14882.
DOI: 10.1021/acs.jpcc.1c01411

2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation

Huayu Chen, Junxiang Chen, Pei Ning, Xin Chen, Junhui Liang, Xin Yao, Da Chen, Laishun Qin, Yuexiang Huang, Zhenhai Wen
ACS Nano, 2021, 15, 12418–12428.
DOI: 10.1021/acsnano.1c04715

Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, Weinan E
J. Chem. Phys., 2021, 154, 94703.
DOI: 10.1063/5.0041849

Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions

Xiaoliang Pan, Junjie Yang, Richard Van, Evgeny Epifanovsky, Junming Ho, Jing Huang, Jingzhi Pu, Ye Mei, Kwangho Nam, Yihan Shao
J. Chem. Theory Comput., 2021, 17, 5745–5758.
DOI: 10.1021/acs.jctc.1c00565

Accurate force field of two-dimensional ferroelectrics from deep learning

Jing Wu, Liyi Bai, Jiawei Huang, Liyang Ma, Jian Liu, Shi Liu
Phys. Rev. B, 2021, 104, 174107.
DOI: 10.1103/PhysRevB.104.174107

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy Fuels, 2021, 35, 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

Jinzhe Zeng, Timothy J Giese, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2021, 17, 6993–7009.
DOI: 10.1021/acs.jctc.1c00201

Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes

Mirza Galib, David T Limmer
Science, 2021, 371, 921–925.
DOI: 10.1126/science.abd7716

86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

Insights from Computational Studies on the Anisotropic Volume Change of LixNiO2 at High States of Charge (x < 0.25)

Juan C. Garcia, Joshua Gabriel, Noah H. Paulson, John Low, Marius Stan, Hakim Iddir
J. Phys. Chem. C, 2021, 125 (49), 27130-27139.
DOI: 10.1021/acs.jpcc.1c08022

Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials

Alejandro Rodriguez, Stephen Lam, Ming Hu
ACS Appl. Mater. Interfaces, 2021, 13, 55367–55379.
DOI: 10.1021/acsami.1c17942

Heat transport in liquid water from first-principles and deep neural network simulations

Davide Tisi, Linfeng Zhang, Riccardo Bertossa, Han Wang, Roberto Car, Stefano Baroni
Phys. Rev. B, 2021, 104, 224202.
DOI: 10.1103/PhysRevB.104.224202

Specialising neural network potentials for accurate properties and application to the mechanical response of titanium

Tongqi Wen, Rui Wang, Lingyu Zhu, Linfeng Zhang, Han Wang, David J. Srolovitz, Zhaoxuan Wu
npj Comput Mater, 2021, 7, 206.
DOI: 10.1038/s41524-021-00661-y

Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4

Mayanak K. Gupta, Jingxuan Ding, Naresh C. Osti, Douglas L. Abernathy, William Arnold, Hui Wang, Zachary Hood, Olivier Delaire
Energy Environ. Sci., 2021, 14, 6554-6563.
DOI: 10.1039/D1EE01509E

Experimental observation of localized interfacial phonon modes

Zhe Cheng, Ruiyang Li, Xingxu Yan, Glenn Jernigan, Jingjing Shi, Michael E Liao, Nicholas J Hines, Chaitanya A Gadre, Juan Carlos Idrobo, Eungkyu Lee, Karl D Hobart, Mark S Goorsky, Xiaoqing Pan, Tengfei Luo, Samuel Graham
Nat. Commun., 2021, 12, 6901.
DOI: 10.1038/s41467-021-27250-3

Artificial intelligence model for efficient simulation of monatomic phase change material antimony

Mengchao Shi, Junhua Li, Ming Tao, Xin Zhang, Jie Liu
Materials Science in Semiconductor Processing, 2021, 136, 106146.
DOI: 10.1016/j.mssp.2021.106146

Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential

L Tang, K M Ho, C Z Wang
J. Chem. Phys., 2021, 155, 194503.
DOI: 10.1063/5.0066061

Choosing the right molecular machine learning potential

Max Pinheiro Jr, Fuchun Ge, Nicolas Ferr'e, Pavlo O Dral, Mario Barbatti
Chem. Sci., 2021, 12, 14396–14413.
DOI: 10.1039/d1sc03564a

Atomic structure of liquid refractory Nb5Si3 intermetallic compound alloy based upon deep neural network potential

Q. Wang, B. Zhai, H. P. Wang, B. Wei
Journal of Applied Physics, 2021, 130, 185103.
DOI: 10.1063/5.0067157

Azo(xy) vs Aniline Selectivity in Catalytic Nitroarene Reduction by Intermetallics: Experiments and Simulations

Carena L. Daniels, Da-Jiang Liu, Marquix A. S. Adamson, Megan Knobeloch, Javier Vela
J. Phys. Chem. C, 2021, 125 (44), 24440-24450.
DOI: 10.1021/acs.jpcc.1c08569

Resolving the Structural Debate for the Hydrated Excess Proton in Water

Paul B Calio, Chenghan Li, Gregory A Voth
J. Am. Chem. Soc., 2021, 143, 18672–18683.
DOI: 10.1021/jacs.1c08552

Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
AIP Advances, 2021, 11, 15043.
DOI: 10.1063/5.0036298

Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning

Dingming Chen, Zhuangzhuang Lai, Jiawei Zhang, Jianfu Chen, Peijun Hu, Haifeng Wang
Chin. J. Chem., 2021, 39, 3029–3036.
DOI: 10.1002/cjoc.202100352

Condensed Phase Water Molecular Multipole Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data

Yu Shi, Carrie C Doyle, Thomas L Beck
J. Phys. Chem. Lett., 2021, 12, 10310–10317.
DOI: 10.1021/acs.jpclett.1c02328

Learning intermolecular forces at liquid-vapor interfaces

Samuel P Niblett, Mirza Galib, David T Limmer
J. Chem. Phys., 2021, 155, 164101.
DOI: 10.1063/5.0067565

Modeling Liquid Water by Climbing up Jacob\textquoterights Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials

Chunyi Zhang, Fujie Tang, Mohan Chen, Jianhang Xu, Linfeng Zhang, Diana Y Qiu, John P Perdew, Michael L Klein, Xifan Wu
J. Phys. Chem. B, 2021, 125, 11444–11456.
DOI: 10.1021/acs.jpcb.1c03884

Deep Density: Circumventing the Kohn-Sham equations via symmetry preserving neural networks

Leonardo Zepeda-N'u\~nez, Yixiao Chen, Jiefu Zhang, Weile Jia, Linfeng Zhang, Lin Lin
Journal of Computational Physics, 2021, 443, 110523.
DOI: 10.1016/j.jcp.2021.110523

First-principles materials simulation and design for alkali and alkaline metal ion batteries accelerated by machine learning

Lujie Jin, Yujin Ji, Hongshuai Wang, Lifeng Ding, Youyong Li
Phys. Chem. Chem. Phys., 2021, 23, 21470–21483.
DOI: 10.1039/d1cp02963k

Local structure elucidation and properties prediction on KCl-CaCl2 molten salt: A deep potential molecular dynamics study

Min Bu, Wenshuo Liang, Guimin Lu, Jianguo Yu
Solar Energy Materials and Solar Cells, 2021, 232, 111346.
DOI: 10.1016/j.solmat.2021.111346

Using Neural Network Force Fields to Ascertain the Quality of Ab Initio Simulations of Liquid Water

Alberto Torres, Luana S Pedroza, Marivi Fernandez-Serra, Alexandre R Rocha
J. Phys. Chem. B, 2021, 125, 10772–10778.
DOI: 10.1021/acs.jpcb.1c04372

Thermal Conductivity of Silicate Liquid Determined by Machine Learning Potentials

Jie Deng, Lars Stixrude
Geophys Res Lett, 2021, 48, e2021GL093806.
DOI: 10.1029/2021GL093806

Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter

Qiyu Zeng, Xiaoxiang Yu, Yunpeng Yao, Tianyu Gao, Bo Chen, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. Research, 2021, 3, 33116.
DOI: 10.1103/PhysRevResearch.3.033116

Liquid-Liquid Critical Point in Phosphorus

Manyi Yang, Tarak Karmakar, Michele Parrinello
Phys. Rev. Lett., 2021, 127, 80603.
DOI: 10.1103/PhysRevLett.127.080603

Robust, Multi-Length-Scale, Machine Learning Potential for Ag–Au Bimetallic Alloys from Clusters to Bulk Materials

Christopher M. Andolina, Marta Bon, Daniele Passerone, Wissam A. Saidi
J. Phys. Chem. C, 2021, 125 (31), 17438-17447.
DOI: 10.1021/acs.jpcc.1c04403

Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential

Md Sabbir Akhanda, S Emad Rezaei, Keivan Esfarjani, Sergiy Krylyuk, Albert V Davydov, Mona Zebarjadi
Phys. Rev. Mater., 2021, 5, 83804.
DOI: 10.1103/PhysRevMaterials.5.083804

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO 3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophys Res Lett, 2021, 48.
DOI: 10.1029/2021GL093573

Deep neural network potentials for diffusional lithium isotope fractionation in silicate melts

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geochimica et Cosmochimica Acta, 2021, 303, 38–50.
DOI: 10.1016/j.gca.2021.03.031

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2021, 126, 236001.
DOI: 10.1103/PhysRevLett.126.236001

Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials

Wenshuo Liang, Guimin Lu, Jianguo Yu
Journal of Materials Science & Technology, 2021, 75, 78-85.
DOI: 10.1016/j.jmst.2020.09.040

The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10.1016/j.mtener.2021.100665

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M Piaggi, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
J. Chem. Theory Comput., 2021, 17, 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential

Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2021, 72, 8-15.
DOI: 10.1016/j.jmst.2020.07.014

Theoretical prediction on the redox potentials of rare-earth ions by deep potentials

Jia Zhao, Wenshuo Liang, Guimin Lu
Ionics, 2021, 27, 2079–2088.
DOI: 10.1007/s11581-021-03988-0

Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space*

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Phys. B, 2021, 30, 50706.
DOI: 10.1088/1674-1056/abf134

Anharmonic Raman spectra simulation of crystals from deep neural networks

Honghui Shang, Haidi Wang
AIP Advances, 2021, 11, 35105.
DOI: 10.1063/5.0040190

Thermal transport by electrons and ions in warm dense aluminum: A combined density functional theory and deep potential study

Qianrui Liu, Junyi Li, Mohan Chen
Matter and Radiation at Extremes, 2021, 6 (2), 026902.
DOI: 10.1063/5.0030123

Crystallization of the P3Sn4 Phase upon Cooling P2Sn5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential

Chao Zhang, Yang Sun, Hai-Di Wang, Feng Zhang, Tong-Qi Wen, Kai-Ming Ho, Cai-Zhuang Wang
J. Phys. Chem. C, 2021, 125 (5), 3127-3133.
DOI: 10.1021/acs.jpcc.0c08873

Enhancing the formation of ionic defects to study the ice Ih/XI transition with molecular dynamics simulations

Pablo M. Piaggi, Roberto Car
Molecular Physics, 2021, 119.
DOI: 10.1080/00268976.2021.1916634

Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature

Chenghan Li, Francesco Paesani, Gregory A Voth
J. Chem. Theory Comput., 2022, 18, 2124–2131.
DOI: 10.1021/acs.jctc.1c01223

Molecular dynamics simulations of lanthanum chloride by deep learning potential

Taixi Feng, Jia Zhao, Wenshuo Liang, Guimin Lu
Computational Materials Science, 2021, 111014.
DOI: 10.1016/j.commatsci.2021.111014

Diffusional fractionation of helium isotopes in silicate melts

H. Luo, B.B. Karki, D.B. Ghosh, H. Bao
Geochem. Persp. Let., 2021, 19–22.
DOI: 10.7185/geochemlet.2128

Short- and medium-range orders in Al90Tb10 glass and their relation to the structures of competing crystalline phases

L. Tang, Z.J. Yang, T.Q. Wen, K.M. Ho, M.J. Kramer, C.Z. Wang
Acta Materialia, 2021, 204, 116513.
DOI: 10.1016/j.actamat.2020.116513

A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP

Gechuanqi Pan, Jing Ding, Yunfei Du, Duu-Jong Lee, Yutong Lu
Computational Materials Science, 2021, 187, 110055.
DOI: 10.1016/j.commatsci.2020.110055

Deep learning of accurate force field of ferroelectricHfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Phys. Rev. B, 2021, 103, 24108.
DOI: 10.1103/PhysRevB.103.024108

Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2-KCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
ACS Appl. Mater. Interfaces, 2021, 13, 4034–4042.
DOI: 10.1021/acsami.0c20665

Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorg. Chem. Front., 2021, 8, 425–432.
DOI: 10.1039/D0QI00921K

When do short-range atomistic machine-learning models fall short?

Shuwen Yue, Maria Carolina Muniz, Marcos F Calegari Andrade, Linfeng Zhang, Roberto Car, Athanassios Z Panagiotopoulos
J. Chem. Phys., 2021, 154, 34111.
DOI: 10.1063/5.0031215

2020

Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics

Marcos F Calegari Andrade, Hsin-Yu Ko, Linfeng Zhang, Roberto Car, Annabella Selloni
Chem. Sci., 2020, 11, 2335–2341.
DOI: 10.1039/C9SC05116C

Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou
Journal of Materials Science & Technology, 2020, 43, 168–174.
DOI: 10.1016/j.jmst.2020.01.005

A deep neural network interatomic potential for studying thermal conductivity of $\beta$-Ga2O3

Ruiyang Li, Zeyu Liu, Andrew Rohskopf, Kiarash Gordiz, Asegun Henry, Eungkyu Lee, Tengfei Luo
Appl. Phys. Lett., 2020, 117, 152102.
DOI: 10.1063/5.0025051

Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential

Qianrui Liu, Denghui Lu, Mohan Chen
J. Phys. Condens. Matter, 2020, 32, 144002.
DOI: 10.1088/1361-648X/ab5890

Ab initio phase diagram and nucleation of gallium

Haiyang Niu, Luigi Bonati, Pablo M Piaggi, Michele Parrinello
Nat. Commun., 2020, 11, 2654.
DOI: 10.1038/s41467-020-16372-9

Raman spectrum and polarizability of liquid water from deep neural networks

Grace M Sommers, Marcos F Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Phys. Chem. Chem. Phys., 2020, 22, 10592–10602.
DOI: 10.1039/D0CP01893G

A machine learning based deep potential for seeking the low-lying candidates of Al clusters

P Tuo, X B Ye, B C Pan
J. Chem. Phys., 2020, 152, 114105.
DOI: 10.1063/5.0001491

Data-driven coarse-grained modeling of polymers in solution with structural and dynamic properties conserved

Shu Wang, Zhan Ma, Wenxiao Pan
Soft Matter, 2020, 16, 8330–8344.
DOI: 10.1039/D0SM01019G

Complex reaction processes in combustion unraveled by neural network- based molecular dynamics simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z H Zhang
Nat. Commun., 2020, 11, 5713.
DOI: 10.1038/s41467-020-19497-z

Deep neural network for the dielectric response of insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, Weinan E, Roberto Car
Phys. Rev. B, 2020, 102, 41121.
DOI: 10.1103/PhysRevB.102.041121

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Phys. Rev. B, 2020, 102, 214113.
DOI: 10.1103/PhysRevB.102.214113

Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations

Carla Andreani, Giovanni Romanelli, Alexandra Parmentier, Roberto Senesi, Alexander I Kolesnikov, Hsin-Yu Ko, Marcos F Calegari Andrade, Roberto Car
J. Phys. Chem. Lett., 2020, 11, 9461–9467.
DOI: 10.1021/acs.jpclett.0c02547

A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases

R. Li, E. Lee, T. Luo
Materials Today Physics, 2020, 12, 100181.
DOI: 10.1016/j.mtphys.2020.100181

Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy

Zhilong Wang, Yanqiang Han, Jinjin Li, Xiao He
J. Phys. Chem. B, 2020, 124, 3027–3035.
DOI: 10.1021/acs.jpcb.0c01370

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
J. Phys. Chem. C, 2020, 124, 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Development of interatomic potential for Al-Tb alloys using a deep neural network learning method

L Tang, Z J Yang, T Q Wen, K M Ho, M J Kramer, C Z Wang
Phys. Chem. Chem. Phys., 2020, 22, 18467–18479.
DOI: 10.1039/D0CP01689F

Isotope effects in x-ray absorption spectra of liquid water

Chunyi Zhang, Linfeng Zhang, Jianhang Xu, Fujie Tang, Biswajit Santra, Xifan Wu
Phys. Rev. B, 2020, 102, 115155.
DOI: 10.1103/PhysRevB.102.115155

Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics

Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen
Physics of Plasmas, 2020, 27, 122704.
DOI: 10.1063/5.0023265

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine-Learning-Based Deep Potential

Wenshuo Liang, Guimin Lu, Jianguo Yu
Adv. Theory Simul., 2020, 3, 2000180.
DOI: 10.1002/adts.202000180

Grain boundary strengthening in ZrB2 by segregation of W: Atomistic simulations with deep learning potential

Fu-Zhi Dai, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of the European Ceramic Society, 2020, 40, 5029–5036.
DOI: 10.1016/j.jeurceramsoc.2020.06.007

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Front. Chem., 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Deep machine learning interatomic potential for liquid silica

I A Balyakin, S V Rempel, R E Ryltsev, A A Rempel
Phys. Rev. E, 2020, 102, 52125.
DOI: 10.1103/PhysRevE.102.052125

Structure of disorderedTiO2phases from ab initio based deep neural network simulations

Marcos F. Calegari Andrade, Annabella Selloni
Phys. Rev. Materials, 2020, 4, 113803.
DOI: 10.1103/PhysRevMaterials.4.113803

Signatures of a liquid-liquid transition in an ab initio deep neural network model for water

Thomas E Gartner 3rd, Linfeng Zhang, Pablo M Piaggi, Roberto Car, Athanassios Z Panagiotopoulos, Pablo G Debenedetti
Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 26040–26046.
DOI: 10.1073/pnas.2015440117

2019

Active learning of uniformly accurate interatomic potentials for materials simulation

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, Weinan E
Phys. Rev. Materials, 2019, 3, 23804.
DOI: 10.1103/PhysRevMaterials.3.023804

Isotope effects in liquid water via deep potential molecular dynamics

Hsin-Yu Ko, Linfeng Zhang, Biswajit Santra, Han Wang, Weinan E, Robert A. DiStasio Jr, Roberto Car
Molecular Physics, 2019, 117, 3269–3281.
DOI: 10.1080/00268976.2019.1652366

Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds

Tongqi Wen, Cai-Zhuang Wang, M. J. Kramer, Yang Sun, Beilin Ye, Haidi Wang, Xueyuan Liu, Chao Zhang, Feng Zhang, Kai-Ming Ho, Nan Wang
Phys. Rev. B, 2019, 100, 174101.
DOI: 10.1103/PhysRevB.100.174101

Deep learning inter-atomic potential model for accurate irradiation damage simulations

Hao Wang, Xun Guo, Linfeng Zhang, Han Wang, Jianming Xue
Appl. Phys. Lett., 2019, 114, 244101.
DOI: 10.1063/1.5098061

2018

Silicon Liquid Structure and Crystal Nucleation from Ab~Initio Deep Metadynamics

Luigi Bonati, Michele Parrinello
Phys. Rev. Lett., 2018, 121, 265701.
DOI: 10.1103/PhysRevLett.121.265701

Deep Learning for Nonadiabatic Excited-State Dynamics

Wen-Kai Chen, Xiang-Yang Liu, Wei-Hai Fang, Pavlo O Dral, Ganglong Cui
J. Phys. Chem. Lett., 2018, 9, 6702–6708.
DOI: 10.1021/acs.jpclett.8b03026

Adaptive coupling of a deep neural network potential to a classical force field

Linfeng Zhang, Han Wang, Weinan E
J. Chem. Phys., 2018, 149, 154107.
DOI: 10.1063/1.5042714

DeePCG: Constructing coarse-grained models via deep neural networks

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E
J. Chem. Phys., 2018, 149, 34101.
DOI: 10.1063/1.5027645

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

Han Wang, Linfeng Zhang, Jiequn Han, Weinan E
Computer Physics Communications, 2018, 228, 178–184.
DOI: 10.1016/j.cpc.2018.03.016

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2018, 120, 143001.
DOI: 10.1103/PhysRevLett.120.143001

0%
\ No newline at end of file diff --git a/papers/dpgen/index.html b/papers/dpgen/index.html index 66a3c07..8f66f79 100644 --- a/papers/dpgen/index.html +++ b/papers/dpgen/index.html @@ -1 +1 @@ -Publications driven by DP-GEN | DeepModeling

DeepModeling

Define the future of scientific computing together

Publications driven by DP-GEN

The following publications have used the DP-GEN software. Publications that only mentioned the DP-GEN will not be included below.

2023

Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field

Yulong Ling, Kun Li, Mi Wang, Junfeng Lu, Chenlu Wang, Yanlei Wang, Hongyan He
Journal of Power Sources, 2023, 555, 232350.
DOI: 10.1016/j.jpowsour.2022.232350

Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics

Jianchuan Liu, Renxi Liu, Yu Cao, Mohan Chen
Phys. Chem. Chem. Phys., 2023.
DOI: 10.1039/d2cp04105g

Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method

B. Zhai, H.P. Wang
Computational Materials Science, 2023, 216, 111843.
DOI: 10.1016/j.commatsci.2022.111843

2022

Modeling Chemical Reactions in Alkali Carbonate-Hydroxide Electrolytes with Deep Learning Potentials

Anirban Mondal, Dina Kussainova, Shuwen Yue, Athanassios Z Panagiotopoulos
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00816

Lattice Thermal Conductivity of MgSiO3 Perovskite and Post- Perovskite under Lower Mantle Conditions Calculated by Deep Potential Molecular Dynamics

Fenghu Yang, Qiyu Zeng, Bo Chen, Dongdong Kang, Shen Zhang, Jianhua Wu, Xiaoxiang Yu, Jiayu Dai
Chinese Phys. Lett., 2022, 39, 116301.
DOI: 10.1088/0256-307X/39/11/116301

Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics

Yong-Bin Zhuang, Rui-Hao Bi, Jun Cheng
J. Chem. Phys., 2022, 157, 164701.
DOI: 10.1063/5.0126333

Origin of negative thermal expansion and pressure-induced amorphization in zirconium tungstate from a machine-learning potential

Ri He, Hongyu Wu, Yi Lu, Zhicheng Zhong
Phys. Rev. B, 2022, 106, 174101.
DOI: 10.1103/PhysRevB.106.174101

Classical and machine learning interatomic potentials for BCC vanadium

Rui Wang, Xiaoxiao Ma, Linfeng Zhang, Han Wang, David J. Srolovitz, Tongqi Wen, Zhaoxuan Wu
Phys. Rev. Materials, 2022, 6, 113603.
DOI: 10.1103/PhysRevMaterials.6.113603

Metal Affinity of Support Dictates Sintering of Gold Catalysts

Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li
J. Am. Chem. Soc., 2022, 144, 20601–20609.
DOI: 10.1021/jacs.2c06785

Multireference Generalization of the Weighted Thermodynamic Perturbation Method

Timothy J Giese, Jinzhe Zeng, Darrin M York
J. Phys. Chem. A, 2022, 126, 8519–8533.
DOI: 10.1021/acs.jpca.2c06201

Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning

Dong Wang, Zhongqing Wu, Xin Deng
Geophysical Research Letters, 2022, 49.
DOI: 10.1029/2022GL100337

Deep potential for a face-centered cubic Cu system at finite temperatures

Yunzhen Du, Zhaocang Meng, Qiang Yan, Canglong Wang, Yuan Tian, Wenshan Duan, Sheng Zhang, Ping Lin
Phys. Chem. Chem. Phys., 2022, 24, 18361–18369.
DOI: 10.1039/D2CP02758E

Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles

Xiaoning Wang, Haidi Wang, Qiquan Luo, Jinlong Yang
J. Chem. Phys., 2022, 157, 74304.
DOI: 10.1063/5.0100505

High accuracy neural network interatomic potential for NiTi shape memory alloy

Hao Tang, Yin Zhang, Qing-Jie Li, Haowei Xu, Yuchi Wang, Yunzhi Wang, Ju Li
Acta Materialia, 2022, 238, 118217.
DOI: 10.1016/j.actamat.2022.118217

A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment

Xiaoyang Wang, Yinan Wang, Linfeng Zhang, Fuzhi Dai, Han Wang
Nucl. Fusion, 2022, 62, 126013.
DOI: 10.1088/1741-4326/ac888b

Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential

Wei Zhang, Li Zhou, Bin Yang, Tinggui Yan
Journal of Molecular Liquids, 2022, 367, 120500.
DOI: 10.1016/j.molliq.2022.120500

Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions

Timothy J Giese, Jinzhe Zeng, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2022, 18, 4304–4317.
DOI: 10.1021/acs.jctc.2c00151

Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl 2 -NaCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advcd Theory and Sims, 2022, 2200206.
DOI: 10.1002/adts.202200206

Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence

Jun-Zhong Xie, Xu-Yuan Zhou, Dong Luan, Hong Jiang
J. Chem. Theory Comput., 2022, 18, 3795–3804.
DOI: 10.1021/acs.jctc.2c00017

Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

Siddarth K Achar, Jacob J Wardzala, Leonardo Bernasconi, Linfeng Zhang, J Karl Johnson
J. Chem. Theory Comput., 2022, 18, 3593–3606.
DOI: 10.1021/acs.jctc.2c00010

Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning

Qiyu Zeng, Bo Chen, Xiaoxiang Yu, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. B, 2022, 105, 174109.
DOI: 10.1103/PhysRevB.105.174109

Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation

Qingzhao Chu, Kai H Luo, Dongping Chen
J. Phys. Chem. Lett., 2022, 13, 4052–4057.
DOI: 10.1021/acs.jpclett.2c00647

Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air-Water Interfaces Depend on Depth and on Interface Specific Area

Miguel de la Puente, Rolf David, Axel Gomez, Damien Laage
J. Am. Chem. Soc., 2022, 144, 10524–10529.
DOI: 10.1021/jacs.2c03099

Dissolving salt is not equivalent to applying a pressure on water

Chunyi Zhang, Shuwen Yue, Athanassios Z Panagiotopoulos, Michael L Klein, Xifan Wu
Nat. Commun., 2022, 13, 822.
DOI: 10.1038/s41467-022-28538-8

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

Paolo Pegolo, Stefano Baroni, Federico Grasselli
npj Comput Mater, 2022, 8, 24.
DOI: 10.1038/s41524-021-00693-4

The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12

Zhong-Heng Fu, Xiang Chen, Nan Yao, Xin Shen, Xia-Xia Ma, Shuai Feng, Shuhao Wang, Rui Zhang, Linfeng Zhang, Qiang Zhang
Journal of Energy Chemistry, 2022, 70, 59–66.
DOI: 10.1016/j.jechem.2022.01.018

Efficient and accurate atomistic modeling of dopant migration using deep neural network

Xi Ding, Ming Tao, Junhua Li, Mingyuan Li, Mengchao Shi, Jiashu Chen, Zhen Tang, Francis Benistant, Jie Liu
Materials Science in Semiconductor Processing, 2022, 143, 106513.
DOI: 10.1016/j.mssp.2022.106513

Exploring the Effects of Ionic Defects on the Stability of CsPbI 3 with a Deep Learning Potential

Weijie Yang, Jiajia Li, Xuelu Chen, Yajun Feng, Chongchong Wu, Ian D Gates, Zhengyang Gao, Xunlei Ding, Jianxi Yao, Hao Li
Chemphyschem, 2022, 23, e202100841.
DOI: 10.1002/cphc.202100841

Self-Healing Mechanism of Lithium in Lithium Metal

Junyu Jiao, Genming Lai, Liang Zhao, Jiaze Lu, Qidong Li, Xianqi Xu, Yao Jiang, Yan-Bing He, Chuying Ouyang, Feng Pan, Hong Li, Jiaxin Zheng
Adv. Sci. (Weinh)., 2022, 9, e2105574.
DOI: 10.1002/advs.202105574

A deep potential model with long-range electrostatic interactions

Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, Weinan E
J. Chem. Phys., 2022, 156, 124107.
DOI: 10.1063/5.0083669

A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion

YiNan Wang, LinFeng Zhang, Ben Xu, XiaoYang Wang, Han Wang
Modelling Simul. Mater. Sci. Eng., 2022, 30, 25003.
DOI: 10.1088/1361-651X/ac4002

Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

Manyi Yang, Luigi Bonati, Daniela Polino, Michele Parrinello
Catalysis Today, 2022, 387, 143–149.
DOI: 10.1016/j.cattod.2021.03.018

Molecular dynamics simulation of molten strontium chloride based on deep potential

Di Guo, Jia Zhao, Wenshuo Liang, Guimin Lu
Journal of Molecular Liquids, 2022, 348, 118380.
DOI: 10.1016/j.molliq.2021.118380

Structural phase transitions in $\mathrmSrTi\mathrmO_3$ from deep potential molecular dynamics

Ri He, Hongyu Wu, Linfeng Zhang, Xiaoxu Wang, Fangjia Fu, Shi Liu, Zhicheng Zhong
Phys. Rev. B, 2022, 105, 064104.
DOI: 10.1103/PhysRevB.105.064104

A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates

Yang Zhou, Haojie Zheng, Weihuan Li, Tao Ma, Changwen Miao
Cement and Concrete Research, 2022, 152, 106685.
DOI: 10.1016/j.cemconres.2021.106685

2021

Insights from Computational Studies on the Anisotropic Volume Change of LixNiO2 at High States of Charge (x < 0.25)

Juan C. Garcia, Joshua Gabriel, Noah H. Paulson, John Low, Marius Stan, Hakim Iddir
J. Phys. Chem. C, 2021, 125 (49), 27130-27139.
DOI: 10.1021/acs.jpcc.1c08022

Specialising neural network potentials for accurate properties and application to the mechanical response of titanium

Tongqi Wen, Rui Wang, Lingyu Zhu, Linfeng Zhang, Han Wang, David J. Srolovitz, Zhaoxuan Wu
npj Comput Mater, 2021, 7, 206.
DOI: 10.1038/s41524-021-00661-y

Artificial intelligence model for efficient simulation of monatomic phase change material antimony

Mengchao Shi, Junhua Li, Ming Tao, Xin Zhang, Jie Liu
Materials Science in Semiconductor Processing, 2021, 136, 106146.
DOI: 10.1016/j.mssp.2021.106146

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

Jinzhe Zeng, Timothy J Giese, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2021, 17, 6993–7009.
DOI: 10.1021/acs.jctc.1c00201

Accurate force field of two-dimensional ferroelectrics from deep learning

Jing Wu, Liyi Bai, Jiawei Huang, Liyang Ma, Jian Liu, Shi Liu
Phys. Rev. B, 2021, 104, 174107.
DOI: 10.1103/PhysRevB.104.174107

Liquid-Liquid Critical Point in Phosphorus

Manyi Yang, Tarak Karmakar, Michele Parrinello
Phys. Rev. Lett., 2021, 127, 80603.
DOI: 10.1103/PhysRevLett.127.080603

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO 3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophys Res Lett, 2021, 48.
DOI: 10.1029/2021GL093573

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2021, 126, 236001.
DOI: 10.1103/PhysRevLett.126.236001

The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10.1016/j.mtener.2021.100665

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M Piaggi, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
J. Chem. Theory Comput., 2021, 17, 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space*

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Phys. B, 2021, 30, 50706.
DOI: 10.1088/1674-1056/abf134

Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, Weinan E
J. Chem. Phys., 2021, 154, 94703.
DOI: 10.1063/5.0041849

Anharmonic Raman spectra simulation of crystals from deep neural networks

Honghui Shang, Haidi Wang
AIP Advances, 2021, 11, 35105.
DOI: 10.1063/5.0040190

Deep learning of accurate force field of ferroelectricHfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Phys. Rev. B, 2021, 103, 24108.
DOI: 10.1103/PhysRevB.103.024108

Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorg. Chem. Front., 2021, 8, 425–432.
DOI: 10.1039/D0QI00921K

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy Fuels, 2021, 35, 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Diffusional fractionation of helium isotopes in silicate melts

H. Luo, B.B. Karki, D.B. Ghosh, H. Bao
Geochem. Persp. Let., 2021, 19–22.
DOI: 10.7185/geochemlet.2128

Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
AIP Advances, 2021, 11, 15043.
DOI: 10.1063/5.0036298

2020

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Front. Chem., 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Signatures of a liquid-liquid transition in an ab initio deep neural network model for water

Thomas E Gartner 3rd, Linfeng Zhang, Pablo M Piaggi, Roberto Car, Athanassios Z Panagiotopoulos, Pablo G Debenedetti
Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 26040–26046.
DOI: 10.1073/pnas.2015440117

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
J. Phys. Chem. C, 2020, 124, 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Deep neural network for the dielectric response of insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, Weinan E, Roberto Car
Phys. Rev. B, 2020, 102, 41121.
DOI: 10.1103/PhysRevB.102.041121

Raman spectrum and polarizability of liquid water from deep neural networks

Grace M Sommers, Marcos F Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Phys. Chem. Chem. Phys., 2020, 22, 10592–10602.
DOI: 10.1039/D0CP01893G

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

0%
\ No newline at end of file +Publications driven by DP-GEN | DeepModeling

DeepModeling

Define the future of scientific computing together

Publications driven by DP-GEN

The following publications have used the DP-GEN software. Publications that only mentioned the DP-GEN will not be included below.

2023

Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field

Yulong Ling, Kun Li, Mi Wang, Junfeng Lu, Chenlu Wang, Yanlei Wang, Hongyan He
Journal of Power Sources, 2023, 555, 232350.
DOI: 10.1016/j.jpowsour.2022.232350

Solvation structures of calcium and magnesium ions in water with the presence of hydroxide: a study by deep potential molecular dynamics

Jianchuan Liu, Renxi Liu, Yu Cao, Mohan Chen
Phys. Chem. Chem. Phys., 2023.
DOI: 10.1039/d2cp04105g

Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method

B. Zhai, H.P. Wang
Computational Materials Science, 2023, 216, 111843.
DOI: 10.1016/j.commatsci.2022.111843

2022

Modeling Chemical Reactions in Alkali Carbonate-Hydroxide Electrolytes with Deep Learning Potentials

Anirban Mondal, Dina Kussainova, Shuwen Yue, Athanassios Z Panagiotopoulos
J. Chem. Theory Comput., 2022.
DOI: 10.1021/acs.jctc.2c00816

Lattice Thermal Conductivity of MgSiO3 Perovskite and Post- Perovskite under Lower Mantle Conditions Calculated by Deep Potential Molecular Dynamics

Fenghu Yang, Qiyu Zeng, Bo Chen, Dongdong Kang, Shen Zhang, Jianhua Wu, Xiaoxiang Yu, Jiayu Dai
Chinese Phys. Lett., 2022, 39, 116301.
DOI: 10.1088/0256-307X/39/11/116301

Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics

Yong-Bin Zhuang, Rui-Hao Bi, Jun Cheng
J. Chem. Phys., 2022, 157, 164701.
DOI: 10.1063/5.0126333

Origin of negative thermal expansion and pressure-induced amorphization in zirconium tungstate from a machine-learning potential

Ri He, Hongyu Wu, Yi Lu, Zhicheng Zhong
Phys. Rev. B, 2022, 106, 174101.
DOI: 10.1103/PhysRevB.106.174101

Classical and machine learning interatomic potentials for BCC vanadium

Rui Wang, Xiaoxiao Ma, Linfeng Zhang, Han Wang, David J. Srolovitz, Tongqi Wen, Zhaoxuan Wu
Phys. Rev. Materials, 2022, 6, 113603.
DOI: 10.1103/PhysRevMaterials.6.113603

Metal Affinity of Support Dictates Sintering of Gold Catalysts

Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li
J. Am. Chem. Soc., 2022, 144, 20601–20609.
DOI: 10.1021/jacs.2c06785

Multireference Generalization of the Weighted Thermodynamic Perturbation Method

Timothy J Giese, Jinzhe Zeng, Darrin M York
J. Phys. Chem. A, 2022, 126, 8519–8533.
DOI: 10.1021/acs.jpca.2c06201

Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning

Dong Wang, Zhongqing Wu, Xin Deng
Geophysical Research Letters, 2022, 49.
DOI: 10.1029/2022GL100337

Deep potential for a face-centered cubic Cu system at finite temperatures

Yunzhen Du, Zhaocang Meng, Qiang Yan, Canglong Wang, Yuan Tian, Wenshan Duan, Sheng Zhang, Ping Lin
Phys. Chem. Chem. Phys., 2022, 24, 18361–18369.
DOI: 10.1039/D2CP02758E

Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles

Xiaoning Wang, Haidi Wang, Qiquan Luo, Jinlong Yang
J. Chem. Phys., 2022, 157, 74304.
DOI: 10.1063/5.0100505

High accuracy neural network interatomic potential for NiTi shape memory alloy

Hao Tang, Yin Zhang, Qing-Jie Li, Haowei Xu, Yuchi Wang, Yunzhi Wang, Ju Li
Acta Materialia, 2022, 238, 118217.
DOI: 10.1016/j.actamat.2022.118217

A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment

Xiaoyang Wang, Yinan Wang, Linfeng Zhang, Fuzhi Dai, Han Wang
Nucl. Fusion, 2022, 62, 126013.
DOI: 10.1088/1741-4326/ac888b

Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential

Wei Zhang, Li Zhou, Bin Yang, Tinggui Yan
Journal of Molecular Liquids, 2022, 367, 120500.
DOI: 10.1016/j.molliq.2022.120500

Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions

Timothy J Giese, Jinzhe Zeng, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2022, 18, 4304–4317.
DOI: 10.1021/acs.jctc.2c00151

Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl 2 -NaCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advcd Theory and Sims, 2022, 2200206.
DOI: 10.1002/adts.202200206

Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence

Jun-Zhong Xie, Xu-Yuan Zhou, Dong Luan, Hong Jiang
J. Chem. Theory Comput., 2022, 18, 3795–3804.
DOI: 10.1021/acs.jctc.2c00017

Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

Siddarth K Achar, Jacob J Wardzala, Leonardo Bernasconi, Linfeng Zhang, J Karl Johnson
J. Chem. Theory Comput., 2022, 18, 3593–3606.
DOI: 10.1021/acs.jctc.2c00010

Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning

Qiyu Zeng, Bo Chen, Xiaoxiang Yu, Shen Zhang, Dongdong Kang, Han Wang, Jiayu Dai
Phys. Rev. B, 2022, 105, 174109.
DOI: 10.1103/PhysRevB.105.174109

Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation

Qingzhao Chu, Kai H Luo, Dongping Chen
J. Phys. Chem. Lett., 2022, 13, 4052–4057.
DOI: 10.1021/acs.jpclett.2c00647

Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air-Water Interfaces Depend on Depth and on Interface Specific Area

Miguel de la Puente, Rolf David, Axel Gomez, Damien Laage
J. Am. Chem. Soc., 2022, 144, 10524–10529.
DOI: 10.1021/jacs.2c03099

Dissolving salt is not equivalent to applying a pressure on water

Chunyi Zhang, Shuwen Yue, Athanassios Z Panagiotopoulos, Michael L Klein, Xifan Wu
Nat. Commun., 2022, 13, 822.
DOI: 10.1038/s41467-022-28538-8

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

Paolo Pegolo, Stefano Baroni, Federico Grasselli
npj Comput Mater, 2022, 8, 24.
DOI: 10.1038/s41524-021-00693-4

The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12

Zhong-Heng Fu, Xiang Chen, Nan Yao, Xin Shen, Xia-Xia Ma, Shuai Feng, Shuhao Wang, Rui Zhang, Linfeng Zhang, Qiang Zhang
Journal of Energy Chemistry, 2022, 70, 59–66.
DOI: 10.1016/j.jechem.2022.01.018

Efficient and accurate atomistic modeling of dopant migration using deep neural network

Xi Ding, Ming Tao, Junhua Li, Mingyuan Li, Mengchao Shi, Jiashu Chen, Zhen Tang, Francis Benistant, Jie Liu
Materials Science in Semiconductor Processing, 2022, 143, 106513.
DOI: 10.1016/j.mssp.2022.106513

Exploring the Effects of Ionic Defects on the Stability of CsPbI 3 with a Deep Learning Potential

Weijie Yang, Jiajia Li, Xuelu Chen, Yajun Feng, Chongchong Wu, Ian D Gates, Zhengyang Gao, Xunlei Ding, Jianxi Yao, Hao Li
Chemphyschem, 2022, 23, e202100841.
DOI: 10.1002/cphc.202100841

Self-Healing Mechanism of Lithium in Lithium Metal

Junyu Jiao, Genming Lai, Liang Zhao, Jiaze Lu, Qidong Li, Xianqi Xu, Yao Jiang, Yan-Bing He, Chuying Ouyang, Feng Pan, Hong Li, Jiaxin Zheng
Adv. Sci. (Weinh)., 2022, 9, e2105574.
DOI: 10.1002/advs.202105574

A deep potential model with long-range electrostatic interactions

Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, Weinan E
J. Chem. Phys., 2022, 156, 124107.
DOI: 10.1063/5.0083669

A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion

YiNan Wang, LinFeng Zhang, Ben Xu, XiaoYang Wang, Han Wang
Modelling Simul. Mater. Sci. Eng., 2022, 30, 25003.
DOI: 10.1088/1361-651X/ac4002

Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

Manyi Yang, Luigi Bonati, Daniela Polino, Michele Parrinello
Catalysis Today, 2022, 387, 143–149.
DOI: 10.1016/j.cattod.2021.03.018

Molecular dynamics simulation of molten strontium chloride based on deep potential

Di Guo, Jia Zhao, Wenshuo Liang, Guimin Lu
Journal of Molecular Liquids, 2022, 348, 118380.
DOI: 10.1016/j.molliq.2021.118380

Structural phase transitions in $\mathrmSrTi\mathrmO_3$ from deep potential molecular dynamics

Ri He, Hongyu Wu, Linfeng Zhang, Xiaoxu Wang, Fangjia Fu, Shi Liu, Zhicheng Zhong
Phys. Rev. B, 2022, 105, 064104.
DOI: 10.1103/PhysRevB.105.064104

A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates

Yang Zhou, Haojie Zheng, Weihuan Li, Tao Ma, Changwen Miao
Cement and Concrete Research, 2022, 152, 106685.
DOI: 10.1016/j.cemconres.2021.106685

2021

Insights from Computational Studies on the Anisotropic Volume Change of LixNiO2 at High States of Charge (x < 0.25)

Juan C. Garcia, Joshua Gabriel, Noah H. Paulson, John Low, Marius Stan, Hakim Iddir
J. Phys. Chem. C, 2021, 125 (49), 27130-27139.
DOI: 10.1021/acs.jpcc.1c08022

Specialising neural network potentials for accurate properties and application to the mechanical response of titanium

Tongqi Wen, Rui Wang, Lingyu Zhu, Linfeng Zhang, Han Wang, David J. Srolovitz, Zhaoxuan Wu
npj Comput Mater, 2021, 7, 206.
DOI: 10.1038/s41524-021-00661-y

Artificial intelligence model for efficient simulation of monatomic phase change material antimony

Mengchao Shi, Junhua Li, Ming Tao, Xin Zhang, Jie Liu
Materials Science in Semiconductor Processing, 2021, 136, 106146.
DOI: 10.1016/j.mssp.2021.106146

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

Jinzhe Zeng, Timothy J Giese, Şölen Ekesan, Darrin M York
J. Chem. Theory Comput., 2021, 17, 6993–7009.
DOI: 10.1021/acs.jctc.1c00201

Accurate force field of two-dimensional ferroelectrics from deep learning

Jing Wu, Liyi Bai, Jiawei Huang, Liyang Ma, Jian Liu, Shi Liu
Phys. Rev. B, 2021, 104, 174107.
DOI: 10.1103/PhysRevB.104.174107

Liquid-Liquid Critical Point in Phosphorus

Manyi Yang, Tarak Karmakar, Michele Parrinello
Phys. Rev. Lett., 2021, 127, 80603.
DOI: 10.1103/PhysRevLett.127.080603

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO 3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophys Res Lett, 2021, 48.
DOI: 10.1029/2021GL093573

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, Weinan E
Phys. Rev. Lett., 2021, 126, 236001.
DOI: 10.1103/PhysRevLett.126.236001

The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10.1016/j.mtener.2021.100665

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M Piaggi, Athanassios Z Panagiotopoulos, Pablo G Debenedetti, Roberto Car
J. Chem. Theory Comput., 2021, 17, 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space*

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Phys. B, 2021, 30, 50706.
DOI: 10.1088/1674-1056/abf134

Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, Weinan E
J. Chem. Phys., 2021, 154, 94703.
DOI: 10.1063/5.0041849

Anharmonic Raman spectra simulation of crystals from deep neural networks

Honghui Shang, Haidi Wang
AIP Advances, 2021, 11, 35105.
DOI: 10.1063/5.0040190

Deep learning of accurate force field of ferroelectricHfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Phys. Rev. B, 2021, 103, 24108.
DOI: 10.1103/PhysRevB.103.024108

Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorg. Chem. Front., 2021, 8, 425–432.
DOI: 10.1039/D0QI00921K

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy Fuels, 2021, 35, 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Diffusional fractionation of helium isotopes in silicate melts

H. Luo, B.B. Karki, D.B. Ghosh, H. Bao
Geochem. Persp. Let., 2021, 19–22.
DOI: 10.7185/geochemlet.2128

Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
AIP Advances, 2021, 11, 15043.
DOI: 10.1063/5.0036298

2020

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Front. Chem., 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Signatures of a liquid-liquid transition in an ab initio deep neural network model for water

Thomas E Gartner 3rd, Linfeng Zhang, Pablo M Piaggi, Roberto Car, Athanassios Z Panagiotopoulos, Pablo G Debenedetti
Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 26040–26046.
DOI: 10.1073/pnas.2015440117

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
J. Phys. Chem. C, 2020, 124, 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Deep neural network for the dielectric response of insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, Weinan E, Roberto Car
Phys. Rev. B, 2020, 102, 41121.
DOI: 10.1103/PhysRevB.102.041121

Raman spectrum and polarizability of liquid water from deep neural networks

Grace M Sommers, Marcos F Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Phys. Chem. Chem. Phys., 2020, 22, 10592–10602.
DOI: 10.1039/D0CP01893G

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

0%
\ No newline at end of file diff --git a/papers/index.html b/papers/index.html index 91414e3..dfdf52e 100644 --- a/papers/index.html +++ b/papers/index.html @@ -1 +1 @@ -Publications citing DeepModeling's work | DeepModeling

DeepModeling

Define the future of scientific computing together

Publications citing DeepModeling's work

Classified by Project (in progress)

0%
\ No newline at end of file +Publications citing DeepModeling's work | DeepModeling

DeepModeling

Define the future of scientific computing together

Publications citing DeepModeling's work

Classified by Project (in progress)

0%
\ No newline at end of file diff --git a/papers/others.html b/papers/others.html index 1483c8e..12b4483 100644 --- a/papers/others.html +++ b/papers/others.html @@ -1 +1 @@ -Others | DeepModeling

DeepModeling

Define the future of scientific computing together

Others

Efficiently Trained Deep Learning Potential for Graphane

Siddarth K. Achar, Linfeng Zhang, J. Karl Johnson
The Journal of Physical Chemistry C, 2021, 125 (27), 14874–14882.
DOI: 10/gmfwwb

Cormorant: Covariant Molecular Neural Networks

Brandon Anderson, Truong-Son Hy, Risi Kondor
Advances in Neural Information Processing Systems 32 (Nips 2019), 2019, 32.

Optimization and Validation of a Deep Learning CuZr Atomistic Potential: Robust Applications for Crystalline and Amorphous Phases with near-DFT Accuracy

Christopher M. Andolina, Philip Williamson, Wissam A. Saidi
Journal of Chemical Physics, 2020, 152 (15).
DOI: 10.1063/5.0005347

Robust, Multi-Length-Scale, Machine Learning Potential for Ag–Au Bimetallic Alloys from Clusters to Bulk Materials

Christopher M. Andolina, Marta Bon, Daniele Passerone, Wissam A. Saidi
The Journal of Physical Chemistry C, 2021.
DOI: 10/gmdj4k

Free Energy of Proton Transfer at the Water-TiO2 Interface from Ab Initio Deep Potential Molecular Dynamics

Marcos F. Calegari Andrade, Hsin-Yu Ko, Linfeng Zhang, Roberto Car, Annabella Selloni
Chemical Science, 2020, 11 (9), 2335–2341.
DOI: 10.1039/c9sc05116c

Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations

Carla Andreani, Giovanni Romanelli, Alexandra Parmentier, Roberto Senesi, Alexander Kolesnikov, Hsin-Yu Ko, Marcos F. Calegari Andrade, Roberto Car
Journal of Physical Chemistry Letters, 2020, 11 (21), 9461–9467.
DOI: 10.1021/acs.jpclett.0c02547

Active Learning Accelerates Ab Initio Molecular Dynamics on Pericyclic Reactive Energy Surfaces

Shi Jun Ang, Wujie Wang, Daniel Schwalbe-Koda, Simon Axelrod, Rafael Gomez-Bombarelli
2020.

Active Learning Accelerates Ab Initio Molecular Dynamics on Reactive Energy Surfaces

Shi Jun Ang, Wujie Wang, Daniel Schwalbe-Koda, Simon Axelrod, Rafael Gómez-Bombarelli
Chem, 2021, 7 (3), 738–751.
DOI: 10/gmgdj2

Embedding Quantum Statistical Excitations in a Classical Force Field

Susan R. Atlas
Journal of Physical Chemistry A, 2021, 125 (17), 3760–3775.
DOI: 10.1021/acs.jpca.1c00164

Deep Machine Learning Interatomic Potential for Liquid Silica

I. A. Balyakin, S. Rempel, R. E. Ryltsev, A. A. Rempel
Physical Review E, 2020, 102 (5), 052125.
DOI: 10.1103/PhysRevE.102.052125

Machine-Learning-Based Interatomic Potential for Phonon Transport in Perfect Crystalline Si and Crystalline Si with Vacancies

Hasan Banaei, Ruiqiang Guo, Amirreza Hashemi, Sangyeop Lee
Physical Review Materials, 2019, 3 (7), 074603.
DOI: 10.1103/PhysRevMaterials.3.074603

Structure Motif-Centric Learning Framework for Inorganic Crystalline Systems

Huta R. Banjade, Sandro Hauri, Shanshan Zhang, Francesco Ricci, Weiyi Gong, Geoffroy Hautier, Slobodan Vucetic, Qimin Yan
Science Advances, 2021, 7 (17), eabf1754.
DOI: 10.1126/sciadv.abf1754

Voxelized Atomic Structure Potentials: Predicting Atomic Forces with the Accuracy of Quantum Mechanics Using Convolutional Neural Networks

Matthew C. Barry, Kristopher E. Wise, Surya R. Kalidindi, Satish Kumar
Journal of Physical Chemistry Letters, 2020, 11 (21), 9093–9099.
DOI: 10.1021/acs.jpclett.0c02271

Machine Learning a General-Purpose Interatomic Potential for Silicon

Albert P. Bartók, James Kermode, Noam Bernstein, Gábor Csányi
Physical Review X, 2018, 8 (4), 041048.
DOI: 10.1103/PhysRevX.8.041048

Machine Learning for Multi-Fidelity Scale Bridging and Dynamical Simulations of Materials

R Batra, S Sankaranarayanan - Journal of Physics: Materials, undefined 2020
iopscience.iop.org, 2020, 3, 31002.
DOI: 10.1088/2515-7639/ab8c2d

SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, Boris Kozinsky
2021.

De Novo Exploration and Self-Guided Learning of Potential-Energy Surfaces

Noam Bernstein, Gabor Csanyi, Volker L. Deringer
Npj Computational Materials, 2019, 5, 99.
DOI: 10.1038/s41524-019-0236-6

A Perspective on Inverse Design of Battery Interphases Using Multi-Scale Modelling, Experiments and Generative Deep Learning

Arghya Bhowmik, Ivano E. Castelli, Juan Maria Garcia-Lastra, Peter Bjorn Jorgensen, Ole Winther, Tejs Vegge
Energy Storage Materials, 2019, 21, 446–456.
DOI: 10.1016/j.ensm.2019.06.011

Efficient Sampling of Equilibrium States Using Boltzmann Generators

Jeremy Binagia, Sean Friedowitz, Kevin J Hou
, 6.

Efficient Global Structure Optimization with a Machine-Learned Surrogate Model

Malthe K. Bisbo, Bjørk Hammer
Physical Review Letters, 2020, 124 (8).
DOI: 10.1103/physrevlett.124.086102

Efficient Prediction of 3D Electron Densities Using Machine Learning

Mihail Bogojeski, Felix Brockherde, Leslie Vogt-Maranto, Li Li, Mark E. Tuckerman, Kieron Burke, Klaus-Robert Müller
2018.

Quantum Chemical Accuracy from Density Functional Approximations via Machine Learning

Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman, Klaus-Robert Mueller, Kieron Burke
Nature Communications, 2020, 11 (1), 5223.
DOI: 10.1038/s41467-020-19093-1

Neural Networks-Based Variationally Enhanced Sampling

Luigi Bonati, Yue-Yu Zhang, Michele Parrinello
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (36), 17641–17647.
DOI: 10.1073/pnas.1907975116

Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics

Luigi Bonati, Michele Parrinello
Physical review letters, 2018, 121 (26), 265701.
DOI: 10.1103/PhysRevLett.121.265701

Machine Learning in Nano-Scale Biomedical Engineering

Alexandros-Apostolos A. Boulogeorgos, Stylianos E. Trevlakis, Sotiris A. Tegos, Vasilis K. Papanikolaou, George K. Karagiannidis
2020.

Transforming Solid-State Precipitates via Excess Vacancies

Laure Bourgeois, Yong Zhang, Zezhong Zhang, Yiqiang Chen, Nikhil Medhekar
Nature Communications, 2020, 11 (1), 1248.
DOI: 10.1038/s41467-020-15087-1

MB-Fit: Software Infrastructure for Data-Driven Many-Body Potential Energy Functions

Ethan Bull-Vulpe, Marc Riera, Andreas Goetz, Francesco Paesani
2021.

Deep-Learning Approach to First-Principles Transport Simulations

Marius Burkle, Umesha Perera, Florian Gimbert, Hisao Nakamura, Masaaki Kawata, Yoshihiro Asai
Physical Review Letters, 2021, 126 (17), 177701.
DOI: 10.1103/PhysRevLett.126.177701

Gaussian Approximation Potentials for Body-Centered-Cubic Transition Metals

J. Byggmastar, K. Nordlund, F. Djurabekova
Physical Review Materials, 2020, 4 (9), 093802.
DOI: 10.1103/PhysRevMaterials.4.093802

Machine-Learning Interatomic Potential for Radiation Damage and Defects in Tungsten

J. Byggmastar, A. Hamedani, K. Nordlund, F. Djurabekova
Physical Review B, 2019, 100 (14), 144105.
DOI: 10.1103/PhysRevB.100.144105

Structure of Disordered \${\textbackslash mathrm{\vphantom}}TiO\vphantom{}\vphantom{}_{2}\$ Phases from Ab Initio Based Deep Neural Network Simulations

Marcos F. Calegari Andrade, Annabella Selloni
Physical Review Materials, 2020, 4 (11), 113803.
DOI: 10/ghnhd5

Machine-Learning X-Ray Absorption Spectra to Quantitative Accuracy

Matthew R. Carbone, Mehmet Topsakal, Deyu Lu, Shinjae Yoo
Physical Review Letters, 2020, 124 (15), 156401.
DOI: 10.1103/PhysRevLett.124.156401

Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory

Bilal Chehaibou, Michael Badawi, Tomas Bucko, Timur Bazhirov, Dario Rocca
Journal of Chemical Theory and Computation, 2019, 15 (11), 6333–6342.
DOI: 10.1021/acs.jctc.9b00782

Topics in the Mathematical Design of Materials

X Chen, I Fonseca, M Ravnik, V Slastikov, C Zannoni
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2021, 379 (2201), 20200108.
DOI: 10.1098/rsta.2020.0108

Direct Prediction of Phonon Density of States with Euclidean Neural Networks

Z Chen, N Andrejevic, T Smidt, Z Ding, Q Xu - Advanced …, undefined 2021
Wiley Online Library, 2021, 8.
DOI: 10.1002/advs.202004214

Atomic Energies from a Convolutional Neural Network

Xin Chen, Mathias S. Jorgensen, Jun Li, Bjork Hammer
Journal of Chemical Theory and Computation, 2018, 14 (7), 3933–3942.
DOI: 10.1021/acs.jctc.8b00149

Competitive Effect of Disorder and Defects on Dynamic Structural Transformation of Compressed Gold

B Chen, Q Zeng, H Wang, D Kang, J Dai
arxiv.org, 2021.
DOI: arXiv:2006.13136

A Critical Review of Machine Learning of Energy Materials

Chi Chen, Yunxing Zuo, Weike Ye, Xiangguo Li, Zhi Deng, Shyue Ping Ong
Advanced Energy Materials, 2020, 10 (8), 1903242.
DOI: 10.1002/aenm.201903242

Machine Learning on Neutron and X-Ray Scattering

Z Chen, N Andrejevic, N Drucker, T Nguyen
arxiv.org.

DeePKS: A Comprehensive Data-Driven Approach toward Chemically Accurate Density Functional Theory

Yixiao Chen, Linfeng Zhang, Han Wang, E. Weinan
Journal of Chemical Theory and Computation, 2021, 17 (1), 170–181.
DOI: 10.1021/acs.jctc.0c00872

DeePKS-Kit: A Package for Developing Machine Learning-Based Chemically Accurate Energy and Density Functional Models

Y Chen, L Zhang, H Wang
arxiv.org, 2021.

Efficient Construction of Excited-State Hessian Matrices with Machine Learning Accelerated Multilayer Energy-Based Fragment Method

Wen-Kai Chen, Yaolong Zhang, Bin Jiang, Wei-Hai Fang, Ganglong Cui
Journal of Physical Chemistry A, 2020, 124 (27), 5684–5695.
DOI: 10.1021/acs.jpca.0c04117

Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments

Michael S. Chen, Tim J. Zuehlsdorff, Tobias Morawietz, Christine M. Isborn, Thomas E. Markland
Journal of Physical Chemistry Letters, 2020, 11 (18), 7559–7568.
DOI: 10.1021/acs.jpclett.0c02168

Co-Segregation of Mg and Zn Atoms at the Planar Η1-Precipitate/Al Matrix Interface in an Aged Al–Zn–Mg Alloy

Bingqing Cheng, Xiaojun Zhao, Yong Zhang, Houwen Chen, Ian Polmear, Jian-Feng Nie
Scripta Materialia, 2020, 185, 51–55.
DOI: 10/gmgc5h

Deep-Learning Potential Method to Simulate Shear Viscosity of Liquid Aluminum at High Temperature and High Pressure by Molecular Dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
Aip Advances, 2021, 11 (1), 015043.
DOI: 10.1063/5.0036298

Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning

Dingming Chen, Zhuangzhuang Lai, Jiawei Zhang, Jianfu Chen, Peijun Hu, Haifeng Wang
Chinese Journal of Chemistry, 2021, n/a (n/a).
DOI: 10/gmfw5g

Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning

Lixue Cheng, Nikola B. Kovachki, Matthew Welborn, Thomas F. Miller
Journal of Chemical Theory and Computation, 2019, 15 (12), 6668–6677.
DOI: 10.1021/acs.jctc.9b00884

Ground State Energy Functional with Hartree-Fock Efficiency and Chemical Accuracy

Yixiao Chen, Linfeng Zhang, Han Wang, E. Weinan
Journal of Physical Chemistry A, 2020, 124 (35), 7155–7165.
DOI: 10.1021/acs.jpca.0c03886

A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules

Lixue Cheng, Matthew Welborn, Anders S. Christensen, Thomas F. Miller
Journal of Chemical Physics, 2019, 150 (13), 131103.
DOI: 10.1063/1.5088393

Integrating Machine Learning with the Multilayer Energy-Based Fragment Method for Excited States of Large Systems

Wen-Kai Chen, Wei-Hai Fang, Ganglong Cui
Journal of Physical Chemistry Letters, 2019, 10 (24), 7836–7841.
DOI: 10.1021/acs.jpclett.9b03113

On the Representation of Solutions to Elliptic PDEs in Barron Spaces

Ziang Chen, Jianfeng Lu, Yulong Lu
2021.

TensorAlloy: An Automatic Atomistic Neural Network Program for Alloys

Xin Chen, Xing-Yu Gao, Ya-Fan Zhao, De-Ye Lin, Wei-Dong Chu, Hai-Feng Song
Computer Physics Communications, 2020, 250, 107057.
DOI: 10.1016/j.cpc.2019.107057

Unsupervised Machine Learning Methods for Polymer Nanocomposites Data via Molecular Dynamics Simulation

Zhudan Chen, Dazi Li, Haixiao Wan, Minghui Liu, Jun Liu
Molecular Simulation, 2020.
DOI: 10.1080/08927022.2020.1851028

Constructing Convex Energy Landscapes for Atomistic Structure Optimization

Siva Chiriki, Mads-Peter Christiansen, B. Hammer
Physical Review B, 2019, 100 (23), 235436.
DOI: 10.1103/PhysRevB.100.235436

Accurate Molecular Dynamics Enabled by Efficient Physically-Constrained Machine Learning Approaches

Stefan Chmiela, Huziel E. Sauceda, Alexandre Tkatchenko, Klaus-Robert Müller
2020, 968, 129–154.
DOI: 10/gmgfsq

Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields

Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Mueller, Alexandre Tkatchenko
Nature Communications, 2018, 9, 3887.
DOI: 10.1038/s41467-018-06169-2

sGDML: Constructing Accurate and Data Efficient Molecular Force Fields Using Machine Learning

Stefan Chmiela, Huziel E. Sauceda, Igor Poltavsky, Klaus-Robert Mueller, Alexandre Tkatchenko
Computer Physics Communications, 2019, 240, 38–45.
DOI: 10.1016/j.cpc.2019.02.007

Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator

Young-Jae Choi, Seung-Hoon Jhi
The Journal of Physical Chemistry B, 2020, 124 (39), 8704–8710.
DOI: 10/gmf6kr

FCHL Revisited: Faster and More Accurate Quantum Machine Learning

Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, O. Anatole von Lilienfeld
Journal of Chemical Physics, 2020, 152 (4), 044107.
DOI: 10.1063/1.5126701

Gaussian Representation for Image Recognition and Reinforcement Learning of Atomistic Structure

Mads Peter V. Christiansen, Henrik Lund Mortensen, Søren Ager Meldgaard, Bjørk Hammer
Journal of Chemical Physics, 2020, 153 (4).
DOI: 10.1063/5.0015571

Autonomous Discovery in the Chemical Sciences Part I: Progress

Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie-International Edition, 2020, 59 (51), 22858–22893.
DOI: 10.1002/anie.201909987

Dielectric Response with Short-Ranged Electrostatics

Stephen J. Cox
Proceedings of the National Academy of Sciences, 2020, 117 (33), 19746–19752.
DOI: 10/ghc8bb

Highly Accurate Many-Body Potentials for Simulations of N2O5 in Water: Benchmarks, Development, and Validation

Vinicius Wilian D. Cruzeiro, Eleftherios Lambros, Marc Riera, Ronak Roy, Francesco Paesani, Andreas W. Gotz
Journal of Chemical Theory and Computation, 2021, 17 (7), 3931–3945.
DOI: 10.1021/acs.jctc.1c00069

Analytical Model of Electron Density and Its Machine Learning Inference

Bruno Cuevas-Zuviria, Luis F. Pacios
Journal of Chemical Information and Modeling, 2020, 60 (8), 3831–3842.
DOI: 10.1021/acs.jcim.0c00197

Large Deviations for the Perceptron Model and Consequences for Active Learning

H Cui, L Saglietti, L Zdeborová - Mathematical and Scientific, undefined 2020
proceedings.mlr.press, 2020, 107, 390–430.

Biomolecular QM/MM Simulations: What Are Some of the "Burning Issues"?

Qiang Cui, Tanmoy Pal, Luke Xie
Journal of Physical Chemistry B, 2021, 125 (3), 689–702.
DOI: 10.1021/acs.jpcb.0c09898

Grain Boundary Strengthening in ZrB2 by Segregation of W: Atomistic Simulations with Deep Learning Potential

Fu-Zhi Dai, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of the European Ceramic Society, 2020, 40 (15), 5029–5036.
DOI: 10.1016/j.jeurceramsoc.2020.06.007

Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2: Molecular Dynamics Simulation by Deep Learning Potential

Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of Materials Science \& Technology, 2021, 72, 8–15.
DOI: 10.1016/j.jmst.2020.07.014

Theoretical Prediction on Thermal and Mechanical Properties of High Entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by Deep Learning Potential

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou
Journal of Materials Science \& Technology, 2020, 43, 168–174.
DOI: 10.1016/j.jmst.2020.01.005

Relationship of Structure and Mechanical Property of Silica with Enhanced Sampling and Machine Learning

Yuanpeng Deng, Tao Du, Hui Li
Journal of the American Ceramic Society, 2021, 104 (8), 3910–3920.
DOI: 10/gmfw49

A General-Purpose Machine-Learning Force Field for Bulk and Nanostructured Phosphorus

Volker L. Deringer, Miguel A. Caro, Gabor Csanyi
Nature Communications, 2020, 11 (1), 5461.
DOI: 10.1038/s41467-020-19168-z

Modelling and Understanding Battery Materials with Machine-Learning-Driven Atomistic Simulations

Volker L. Deringer
Journal of Physics-Energy, 2020, 2 (4), 041003.
DOI: 10.1088/2515-7655/abb011

Learning from the Density to Correct Total Energy and Forces in First Principle Simulations

Sebastian Dick, Marivi Fernandez-Serra
The Journal of Chemical Physics, 2019, 151 (14), 144102.
DOI: 10/gmgftv

Hierarchical Machine Learning of Potential Energy Surfaces

Pavlo O. Dral, Alec Owens, Alexey Dral, Gabor Csanyi
Journal of Chemical Physics, 2020, 152 (20).
DOI: 10.1063/5.0006498

MLatom 2: An Integrative Platform for Atomistic Machine Learning

Pavlo O. Dral, Fuchun Ge, Bao-Xin Xue, Yi-Fan Hou, Max Pinheiro, Jianxing Huang, Mario Barbatti
Topics in Current Chemistry, 2021, 379 (4), 27.
DOI: 10.1007/s41061-021-00339-5

Quantum Chemistry in the Age of Machine Learning

Pavlo O. Dral
Journal of Physical Chemistry Letters, 2020, 11 (6), 2336–2347.
DOI: 10.1021/acs.jpclett.9b03664

Toward Efficient Generation, Correction, and Properties Control of Unique Drug-like Structures

Maksym Druchok, Dzvenymyra Yarish, Oleksandr Gurbych, Mykola Maksymenko
Journal of Computational Chemistry, 2021, 42 (11), 746–760.
DOI: 10.1002/jcc.26494

Dynamics \& Spectroscopy with Neutrons-Recent Developments \& Emerging Opportunities

Kacper Druzbicki, Mattia Gaboardi, Felix Fernandez-Alonso
Polymers, 2021, 13 (9), 1440.
DOI: 10.3390/polym13091440

Data-Driven Approaches Can Overcome the Cost-Accuracy Trade-Off in Multireference Diagnostics

Chenru Duan, Fang Liu, Aditya Nandy, Heather J. Kulik
Journal of Chemical Theory and Computation, 2020, 16 (7), 4373–4387.
DOI: 10.1021/acs.jctc.0c00358

Learning from Failure: Predicting Electronic Structure Calculation Outcomes with Machine Learning Models

Chenru Duan, Jon Paul Janet, Fang Liu, Aditya Nandy, Heather J. Kulik
Journal of Chemical Theory and Computation, 2019, 15 (4), 2331–2345.
DOI: 10.1021/acs.jctc.9b00057

Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials

D Dubbeldam, KS Walton, TJH Vlugt - Advanced Theory and …, undefined 2019
Wiley Online Library, 2019, 2 (11).
DOI: 10.1002/adts.201900135

Atomic Cluster Expansion: Completeness, Efficiency and Stability

Genevieve Dusson, Markus Bachmayr, Gabor Csanyi, Ralf Drautz, Simon Etter, Cas van der Oord, Christoph Ortner
2021.

Algorithms for Solving High Dimensional PDEs: From Nonlinear Monte Carlo to Machine Learning

Weinan E, Jiequn Han, Arnulf Jentzen, A Jentzen - arXiv preprint ArXiv:2008.13333, undefined 2020
arxiv.org, 2020.

Accelerating Finite-Temperature Kohn-Sham Density Functional Theory with Deep Neural Networks

J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi, S. Rajamanickam
Physical Review B, 2021, 104 (3), 035120.
DOI: 10.1103/PhysRevB.104.035120

Neuroevolution Machine Learning Potentials: Combining High Accuracy and Low Cost in Atomistic Simulations and Application to Heat Transport

Zheyong Fan, Zezhu Zeng, Cunzhi Zhang, Yanzhou Wang, Haikuan Dong, Yue Chen, Tapio Ala-Nissila
2021.

A Mathematical Principle of Deep Learning: Learn the Geodesic Curve in the Wasserstein Space

Kuo Gai, Shihua Zhang
2021.

Reactive Uptake of N2O5 by Atmospheric Aerosol Is Dominated by Interfacial Processes

M Galib, DT Limmer
science.sciencemag.org, 2021.

Deep Learning in Protein Structural Modeling and Design

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, Jeffrey J. Gray
Patterns, 2020, 1 (9), 100142.
DOI: 10.1016/j.patter.2020.100142

Short Solvent Model for Ion Correlations and Hydrophobic Association

Ang Gao, Richard C. Remsing, John D. Weeks
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (3), 1293–1302.
DOI: 10.1073/pnas.1918981117

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials

Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin S. Smith, Adrian E. Roitberg
Journal of Chemical Information and Modeling, 2020, 60 (7), 3408–3415.
DOI: 10.1021/acs.jcim.0c00451

Signatures of a Liquid-Liquid Transition in an Ab Initio Deep Neural Network Model for Water

Thomas E. Gartner, Linfeng Zhang, Pablo M. Piaggi, Roberto Car, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (42), 26040–26046.
DOI: 10.1073/pnas.2015440117

Combining Phonon Accuracy with High Transferability in Gaussian Approximation Potential Models

Janine George, Geoffroy Hautier, Albert P. Bartok, Gabor Csanyi, Volker L. Deringer
Journal of Chemical Physics, 2020, 153 (4), 044104.
DOI: 10.1063/5.0013826

The Role of Feature Space in Atomistic Learning

Alexander Goscinski, Guillaume Fraux, Giulio Imbalzano, Michele Ceriotti
Machine Learning-Science and Technology, 2021, 2 (2), 025028.
DOI: 10.1088/2632-2153/abdaf7

Code Interoperability Extends the Scope of Quantum Simulations

Marco Govoni, Jonathan Whitmer, Juan de Pablo, Francois Gygi, Giulia Galli
Npj Computational Materials, 2021, 7 (1), 32.
DOI: 10.1038/s41524-021-00501-z

Incorporating Long-Range Physics in Atomic-Scale Machine Learning

Andrea Grisafi, Michele Ceriotti
Journal of Chemical Physics, 2019, 151 (20), 204105.
DOI: 10.1063/1.5128375

Multi-Scale Approach for the Prediction of Atomic Scale Properties

Andrea Grisafi, Jigyasa Nigam, Michele Ceriotti
Chemical Science, 2021, 12 (6), 2078–2090.
DOI: 10.1039/d0sc04934d

Deep Neural Network Model for Approximating Eigenmodes Localized by a Confining Potential

L Grubišić, M Hajba, D Lacmanović - Entropy
mdpi.com, 2021, 2, 27001.
DOI: 10.1088/2632-2153/abc940

Finite-Temperature Interplay of Structural Stability, Chemical Complexity, and Elastic Properties of Bcc Multicomponent Alloys from Ab Initio Trained Machine-Learning Potentials

Konstantin Gubaev, Yuji Ikeda, Ferenc Tasnadi, Joerg Neugebauer, Alexander Shapeev, Blazej Grabowski, Fritz Koermann
Physical Review Materials, 2021, 5 (7), 073801.
DOI: 10.1103/PhysRevMaterials.5.073801

Enumeration of de Novo Inorganic Complexes for Chemical Discovery and Machine Learning

Stefan Gugler, Jon Paul Janet, Heather J. Kulik
Molecular Systems Design \& Engineering, 2020, 5 (1), 139–152.
DOI: 10.1039/c9me00069k

High-Repetition-Rate Femtosecond Mid-Infrared Pulses Generated by Nonlinear Optical Modulation of Continuous-Wave QCLs and ICLs

Chenglin Gu, Zhong Zuo, Daping Luo, Daowang Peng, Yuanfeng Di, Xing Zou, Liu Yang, Wenxue Li
Optics Letters, 2019, 44 (23), 5848–5851.
DOI: 10.1364/OL.44.005848

Neural Network Representation of Electronic Structure from Ab Initio Molecular Dynamics

Q Gu, L Zhang, J Feng
arxiv.org, 2021.

Bergman-Type Medium Range Order in Amorphous Zr77Rh23 Alloy Studied by Ab Initio Molecular Dynamics Simulations

Y. R. Guo, Chong Qiao, J. J. Wang, H. Shen, S. Y. Wang, Y. X. Zheng, R. J. Zhang, L. Y. Chen, Wan-Sheng Su, C. Z. Wang, K. M. Ho
Journal of Alloys and Compounds, 2019, 790, 675–682.
DOI: 10.1016/j.jallcom.2019.03.197

The Thermoelectric Performance of New Structure SnSe Studied by Quotient Graph and Deep Learning Potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10/gmgd38

Sparse Gaussian Process Potentials: Application to Lithium Diffusivity in Superionic Conducting Solid Electrolytes

Amir Hajibabaei, Chang Woo Myung, Kwang S. Kim
Physical Review B, 2021, 103 (21), 214102.
DOI: 10.1103/PhysRevB.103.214102

MAISE: Construction of Neural Network Interatomic Models and Evolutionary Structure Optimization

S Hajinazar, A Thorn, ED Sandoval
Elsevier, 2020.

Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach

Jong-Kwon Ha, Kicheol Kim, Seung Kyu Min
Journal of Chemical Theory and Computation, 2021, 17 (2), 694–702.
DOI: 10.1021/acs.jctc.0c01261

Dynamic Observation of Dendritic Quasicrystal Growth upon Laser-Induced Solid-State Transformation

Insung Han, Joseph T. McKeown, Ling Tang, Cai-Zhuang Wang, Hadi Parsamehr, Zhucong Xi, Ying-Rui Lu, Matthew J. Kramer, Ashwin J. Shahani
Physical Review Letters, 2020, 125 (19), 195503.
DOI: 10.1103/PhysRevLett.125.195503

A Machine Learning Approach for MP2 Correlation Energies and Its Application to Organic Compounds

Ruocheng Han, Mauricio Rodriguez-Mayorga, Sandra Luber
Journal of Chemical Theory and Computation, 2021, 17 (2), 777–790.
DOI: 10.1021/acs.jctc.0c00898

Solving Many-Electron Schrodinger Equation Using Deep Neural Networks

Jiequn Han, Linfeng Zhang, Weinan E
Journal of Computational Physics, 2019, 399, 108929.
DOI: 10.1016/j.jcp.2019.108929

Trajectory-Based Machine Learning Method and Its Application to Molecular Dynamics

R. Han, S. Luber
Molecular Physics, 2020, 118 (19-20).
DOI: 10.1080/00268976.2020.1788189

Uniformly Accurate Machine Learning-Based Hydrodynamic Models for Kinetic Equations

Jiequn Han, Chao Ma, Zheng Ma, Weinan E
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (44), 21983–21991.
DOI: 10.1073/pnas.1909854116

Uniformly Accurate Machine Learning-Based Hydrodynamic Models for Kinetic Equations

Jiequn Han, Chao Ma, Zheng Ma, Weinan E
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (44), 21983–21991.
DOI: 10.1073/pnas.1909854116

Universal Approximation of Symmetric and Anti-Symmetric Functions

J Han, Y Li, L Lin, J Lu, J Zhang, L Zhang
arxiv.org, 2019.

Validating First-Principles Molecular Dynamics Calculations of Oxide/Water Interfaces with x-Ray Reflectivity Data

Katherine J. Harmon, Kendra Letchworth-Weaver, Alex P. Gaiduk, Federico Giberti, Francois Gygi, Maria K. Y. Chan, Paul Fenter, Giulia Galli
Physical Review Materials, 2020, 4 (11), 113805.
DOI: 10.1103/PhysRevMaterials.4.113805

An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models

Jason R. Hattrick-Simpers, Brian DeCost, A. Gilad Kusne, Howie Joress, Winnie Wong-Ng, Debra L. Kaiser, Andriy Zakutayev, Caleb Phillips, Shijing Sun, Janak Thapa, Heshan Yu, Ichiro Takeuchi, Tonio Buonassisi
Integrating Materials and Manufacturing Innovation, 2021, 10 (2), 311–318.
DOI: 10/gkhbw2

Fast, Accurate, and Transferable Many-Body Interatomic Potentials by Symbolic Regression

Alberto Hernandez, Adarsh Balasubramanian, Fenglin Yuan, Simon A. M. Mason, Tim Mueller
Npj Computational Materials, 2019, 5, 112.
DOI: 10.1038/s41524-019-0249-1

Compressing Physical Properties of Atomic Species for Improving Predictive Chemistry

John E. Herr, Kevin Koh, Kun Yao, John Parkhill
The Journal of Chemical Physics, 2019, 151 (8), 084103.
DOI: 10/ggb5bq

Compressing Physics with an Autoencoder: Creating an Atomic Species Representation to Improve Machine Learning Models in the Chemical Sciences

John E. Herr, Kevin Koh, Kun Yao, John Parkhill
Journal of Chemical Physics, 2019, 151 (8), 084103.
DOI: 10.1063/1.5108803

In Operando Active Learning of Interatomic Interaction during Large-Scale Simulations

M Hodapp, A Shapeev - Machine Learning: Science And, undefined 2020
iopscience.iop.org, 2020.
DOI: 10.1088/2632-2153/aba373

Machine-Learning Potentials Enable Predictive \$\textbackslash textit{and}\$ Tractable High-Throughput Screening of Random Alloys

Max Hodapp, Alexander Shapeev
2021.

Dielectric Constant of Supercritical Water in a Large Pressure-Temperature Range

Rui Hou, Yuhui Quan, Ding Pan
Journal of Chemical Physics, 2020, 153 (10), 101103.
DOI: 10.1063/5.0020811

Deep Potential Generation Scheme and Simulation Protocol for the Li10GeP2S12-Type Superionic Conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, E. Weinan
Journal of Chemical Physics, 2021, 154 (9), 094703.
DOI: 10.1063/5.0041849

Ab Initio Machine Learning in Chemical Compound Space

Bing Huang, O. Anatole von Lilienfeld
2021.

Int-Deep: A Deep Learning Initialized Iterative Method for Nonlinear Problems

Jianguo Huang, Haoqin Wang, Haizhao Yang
Journal of Computational Physics, 2020, 419, 109675.
DOI: 10/gg2rtj

Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows

Juntao Huang, Zhiting Ma, Yizhou Zhou, Wen An Yong
Journal of Non-Equilibrium Thermodynamics, 2021.
DOI: 10.1515/JNET-2021-0008/HTML

Machine Learning Moment Closure Models for the Radiative Transfer Equation I: Directly Learning a Gradient Based Closure

Juntao Huang, Yingda Cheng, Andrew J. Christlieb, Luke F. Roberts
2021.

Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation

Deping Hu, Yu Xie, Xusong Li, Lingyue Li, Zhenggang Lan
Journal of Physical Chemistry Letters, 2018, 9 (11), 2725–2732.
DOI: 10.1021/acs.jpclett.8b00684

Neural Network Force Fields for Metal Growth Based on Energy Decompositions

Qin Hu, Mouyi Weng, Xin Chen, Shucheng Li, Feng Pan, Lin-Wang Wang
Journal of Physical Chemistry Letters, 2020, 11 (4), 364–1369.
DOI: 10.1021/acs.jpclett.9b03780

Perspective on Multi-Scale Simulation of Thermal Transport in Solids and Interfaces

Ming Hu, Zhonghua Yang
Physical Chemistry Chemical Physics, 2021, 23 (3), 1785–1801.
DOI: 10.1039/d0cp03372c

Coarse Graining Molecular Dynamics with Graph Neural Networks

Brooke E. Husic, Nicholas E. Charron, Dominik Lemm, Jiang Wang, Adria Perez, Maciej Majewski, Andreas Kramer, Yaoyi Chen, Simon Olsson, Gianni de Fabritiis, Frank Noe, Cecilia Clementi
Journal of Chemical Physics, 2020, 153 (19), 194101.
DOI: 10.1063/5.0026133

Artificial Neutral Networks (ANNs) Applied as CFD Optimization Techniques

Ideen Sadrehaghighi
2021.
DOI: 10/gmf5vh

Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers

Nicholas E. Jackson, Alec S. Bowen, Juan J. de Pablo
Macromolecules, 2020, 53 (1), 482–490.
DOI: 10.1021/acs.macromol.9b02020

Electronic Structure at Coarse-Grained Resolutions from Supervised Machine Learning

Nicholas E. Jackson, Alec S. Bowen, Lucas W. Antony, Michael A. Webb, Venkatram Vishwanath, Juan J. de Pablo
Science Advances, 2019, 5 (3), eaav1190.
DOI: 10.1126/sciadv.aav1190

Recent Advances in Machine Learning towards Multiscale Soft Materials Design

Nicholas E. Jackson, Michael A. Webb, Juan J. de Pablo
Current Opinion in Chemical Engineering, 2019, 23, 106–114.
DOI: 10.1016/j.coche.2019.03.005

Machine Learning for Metallurgy III: A Neural Network Potential for Al-Mg-Si

Abhinav C.P. Jain, Daniel Marchand, Albert Glensk, M. Ceriotti, W. A. Curtin
Physical Review Materials, 2021, 5 (5).
DOI: 10.1103/physrevmaterials.5.053805

A Quantitative Uncertainty Metric Controls Error in Neural Network-Driven Chemical Discovery

Jon Paul Janet, Chenru Duan, Tzuhsiung Yang, Aditya Nandy, Heather J. Kulik
Chemical Science, 2019, 10 (34), 7913–7922.
DOI: 10.1039/c9sc02298h

Uncertain Times Call for Quantitative Uncertainty Metrics: Controlling Error in Neural Network Predictions for Chemical Discovery

Jon Paul Janet, Chenru Duan, Tzuhsiung Yang, Aditya Nandy, Heather Kulik
2019.
DOI: 10.26434/chemrxiv.7900277.v1

Towards Fully Ab Initio Simulation of Atmospheric Aerosol Nucleation

S Jiang, YR Liu, T Huang, YJ Feng, CY Wang
arxiv.org, 2021.

Accurate Deep Potential Model for the Al–Cu–Mg Alloy in the Full Concentration Space

W Jiang, Y Zhang, L Zhang, Wang H
iopscience.iop.org, 2021.

Accurate Deep Potential Model for the Al-Cu-Mg Alloy in the Full Concentration Space

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Physics B, 2021, 30 (5), 050706.
DOI: 10.1088/1674-1056/abf134

Self-Healing Mechanism of Lithium Metal

Junyu Jiao, Genming Lai, Jiaze Lu, Xianqi Xu, Jing Wang, Jiaxin Zheng
2021.

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, L Lin, Lin Lin, Roberto Car, Linfeng Zhang
ieeexplore.ieee.org, 2021.

On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

Ryosuke Jinnouchi, Kazutoshi Miwa, Ferenc Karsai, Georg Kresse, Ryoji Asahi
Journal of Physical Chemistry Letters, 2020, 11 (17), 6946–6955.
DOI: 10.1021/acs.jpclett.0c01061

Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration

Pei-Lin Kang, Cheng Shang, Zhi-Pan Liu
Accounts of Chemical Research, 2020, 53 (10), 2119–2129.
DOI: 10.1021/acs.accounts.0c00472

Enabling Ab Initio Configurational Sampling of Multicomponent Solids with Long-Range Interactions Using Neural Network Potentials and Active Learning

Shusuke Kasamatsu, Yuichi Motoyama, Kazuyoshi Yoshimi, Ushio Matsumoto, Akihide Kuwabara, Takafumi Ogawa
2020.

Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert Müller, Alexandre Tkatchenko
2021.

Reaction Path-Force Matching in Collective Variables: Determining Ab Initio QM/MM Free Energy Profiles by Fitting Mean Force

Bryant Kim, Ryan Snyder, Mulpuri Nagaraju, Yan Zhou, Pedro Ojeda-May, Seth Keeton, Mellisa Hege, Yihan Shao, Jingzhi Pu
Journal of Chemical Theory and Computation, 2021, 17 (8), 4961–4980.
DOI: 10/gmfw5p

Neural Network Potentials: A Concise Overview of Methods

Emir Kocer, TW Tsz Wai Ko, Jörg Behler, J Behler
arxiv.org, 2021.

Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based Ab Initio Molecular Dynamics. 1. Theory, Algorithm, and Performance

Hsin-Yu Ko, Junteng Jia, Biswajit Santra, Xifan Wu, Roberto Car, Robert DiStasio
Journal of Chemical Theory and Computation, 2020, 16 (6), 3757–3785.
DOI: 10.1021/acs.jctc.9b01167

Isotope Effects in Liquid Water via Deep Potential Molecular Dynamics

Hsin-Yu Ko, Linfeng Zhang, Biswajit Santra, Han Wang, Weinan E, Robert A. DiStasio, Roberto Car
Molecular Physics, 2019, 117 (22), 3269–3281.
DOI: 10.1080/00268976.2019.1652366

N-Body Networks: A Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials

Risi Kondor
2018.

Manifold Learning for Coarse-Graining Atomistic Simulations: Application to Amorphous Solids

Katiana Kontolati, Darius Alix-Williams, Nicholas M. Boffi, Michael L. Falk, Chris H. Rycroft, Michael D. Shields
2021.

Accessing Thermal Conductivity of Complex Compounds by Machine Learning Interatomic Potentials

P Korotaev, I Novoselov, A Yanilkin, A Shapeev B
APS, 2019, 100 (14), 144308.
DOI: 10.1103/physrevb.100.144308

Dielectric Constant of Liquid Water Determined with Neural Network Quantum Molecular Dynamics

Aravind Krishnamoorthy, Ken-ichi Nomura, Nitish Baradwaj, Kohei Shimamura, Pankaj Rajak, Ankit Mishra, Shogo Fukushima, Fuyuki Shimojo, Rajiv Kalia, Aiichiro Nakano, Priya Vashishta
Physical Review Letters, 2021, 126 (21), 216403.
DOI: 10.1103/PhysRevLett.126.216403

Size and Temperature Transferability of Direct and Local Deep Neural Networks for Atomic Forces

Natalia Kuritz, Goren Gordon, Amir Natan
Physical Review B, 2018, 98 (9), 094109.
DOI: 10/gkv2j9

The Estimation of the Second Virial Coefficients of He and N2 Based on Neural Network Potentials with Quantum Mechanical Calculations

Taejin Kwon, Han Wook Song, Sam Yong Woo, Jong-Ho Kim, Bong June Sung
Chemical Physics, 2021, 548, 111231.
DOI: 10/gmf6ws

Machine-Learning-Based Non-Newtonian Fluid Model with Molecular Fidelity

Huan Lei, Lei Wu, Weinan Weinan
Physical Review E, 2020, 102 (4).
DOI: 10.1103/physreve.102.043309

Modeling Electrochemical Interfaces from Ab Initio Molecular Dynamics: Water Adsorption on Metal Surfaces at Potential of Zero Charge

Jia-Bo Le, Jun Cheng
Current Opinion in Electrochemistry, 2020, 19, 129–136.
DOI: 10.1016/j.coelec.2019.11.008

Non-Classical Nucleation Pathways in Stacking-Disordered Crystals

Fabio Leoni, John Russo
2021.

Nonclassical Nucleation Pathways in Stacking-Disordered Crystals

Fabio Leoni, John Russo
Physical Review X, 2021, 11 (3), 031006.
DOI: 10.1103/PhysRevX.11.031006

Accurate and Transferable Reactive Molecular Dynamics Models from Constrained Density Functional Theory

Chenghan Li, Gregory A Voth
, 31.

Analysis of Trajectory Similarity and Configuration Similarity in On-the-Fly Surface-Hopping Simulation on Multi-Channel Nonadiabatic Photoisomerization Dynamics

Xusong Li, Deping Hu, Yu Xie, Zhenggang Lan
Journal of Chemical Physics, 2018, 149 (24), 244104.
DOI: 10.1063/1.5048049

Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2-KCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Acs Applied Materials \& Interfaces, 2021, 13 (3), 4034–4042.
DOI: 10.1021/acsami.0c20665

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine-Learning-Based Deep Potential

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advanced Theory and Simulations, 2020, 3 (12), 2000180.
DOI: 10.1002/adts.202000180

Theoretical Prediction on the Local Structure and Transport Properties of Molten Alkali Chlorides by Deep Potentials

Wenshuo Liang, Guimin Lu, Jianguo Yu
Journal of Materials Science \& Technology, 2021, 75, 78–85.
DOI: 10/gmf63v

Better Approximations of High Dimensional Smooth Functions by Deep Neural Networks with Rectified Power Units

Bo Li, Shanshan Tang, Haijun Yu
Communications in Computational Physics, 2020, 27 (2), 379–411.
DOI: 10.4208/cicp.OA-2019-0168

CONFORMATION-GUIDED MOLECULAR REPRESENTA- TION WITH HAMILTONIAN NEURAL NETWORKS

Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
2021, 11.

Development of Robust Neural-Network Interatomic Potential for Molten Salt

Qing-Jie Li, Emine Kucukbenli, Stephen Lam, Boris Khaykovich, Efthimios Kaxiras, Ju Li
Cell Reports Physical Science, 2021, 2 (3), 100359.
DOI: 10.1016/j.xcrp.2021.100359

Effect of Local Structural Disorder on Lithium Diffusion Behavior in Amorphous Silicon

Wenwen Li, Yasunobu Ando
Physical Review Materials, 2020, 4 (4).
DOI: 10.1103/physrevmaterials.4.045602

HamNet: Conformation-Guided Molecular Representation with Hamiltonian Neural Networks

Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
2021.

Introducing Block Design in Graph Neural Networks for Molecular Properties Prediction

Yuquan Li, Pengyong Li, Xing Yang, Chang-Yu Hsieh, Shengyu Zhang, Xiaorui Wang, Ruiqiang Lu, Huanxiang Liu, Xiaojun Yao
Chemical Engineering Journal, 2021, 414, 128817.
DOI: 10.1016/j.cej.2021.128817

Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal–Oxide Interfaces

Xiaoke Li, Wolfgang Paier, Joachim Paier
Frontiers in Chemistry, 2020, 8, 601029.
DOI: 10/ghnggc

Multilevel Fine-Tuning: Closing Generalization Gaps in Approximation of Solution Maps Under a Limited Budget for Training Data

Zhihan Li, Yuwei Fan, Lexing Ying
Multiscale Modeling \& Simulation, 2021, 19 (1), 344–373.
DOI: 10.1137/20M1326404

Neural Canonical Transformation with Symplectic Flows

Shuo-Hui Li, Chen-Xiao Dong, Linfeng Zhang, Lei Wang
Physical Review X, 2020, 10 (2), 021020.
DOI: 10.1103/PhysRevX.10.021020

A Neural-Network Based Framework of Developing Cross Interaction in Alloy Embedded-Atom Method Potentials: Application to Zr-Nb Alloy

Bo Lin, Jincheng Wang, Junjie Li, Zhijun Wang
Journal of Physics-Condensed Matter, 2021, 33 (8), 084004.
DOI: 10.1088/1361-648X/abcb69

Numerical Methods for Kohn-Sham Density Functional Theory

Lin Lin, Jianfeng Lu, Lexing Ying
Acta Numerica, 2019, 28, 405–539.
DOI: 10.1017/S0962492919000047

Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials

Qidong Lin, Liang Zhang, Yaolong Zhang, Bin Jiang
Journal of Chemical Theory and Computation, 2021, 17 (5), 2691–2701.
DOI: 10/gmfw5n

Unravelling the Fast Alkali-Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deep-Potential Molecular Dynamics Simulation

Min Lin, Xiangsi Liu, Yuxuan Xiang, Feng Wang, Yunpei Liu, Riqiang Fu, Jun Cheng, Yong Yang
Angewandte Chemie-International Edition, 2021, 60 (22), 12547–12553.
DOI: 10.1002/anie.202102740

PowerNet: Efficient Representations of Polynomials and Smooth Functions by Deep Neural Networks with Rectified Power Units

Bo Li, Shanshan Tang, Haijun Yu
Journal of Mathematical Study, 2020, 53 (2), 159–191.
DOI: 10.4208/jms.v53n2.20.03

Theoretical Study of Na+ Transport in the Solid-State Electrolyte Na3OBr Based on Deep Potential Molecular Dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorganic Chemistry Frontiers, 2021, 8 (2), 425–432.
DOI: 10.1039/d0qi00921k

Machine Learning Phase Space Quantum Dynamics Approaches

Xinzijian Liu, Linfeng Zhang, Jian Liu
Journal of Chemical Physics, 2021, 154 (18), 184104.
DOI: 10.1063/5.0046689

A Unified Deep Neural Network Potential Capable of Predicting Thermal Conductivity of Silicon in Different Phases

R. Li, E. Lee, T. Luo
Materials Today Physics, 2020, 12, 100181.
DOI: 10.1016/j.mtphys.2020.100181

Rapid Detection of Strong Correlation with Machine Learning for Transition-Metal Complex High-Throughput Screening

Fang Liu, Chenru Duan, Heather J. Kulik
Journal of Physical Chemistry Letters, 2020, 11 (19), 8067–8076.
DOI: 10.1021/acs.jpclett.0c02288

Structure and Dynamics of Warm Dense Aluminum: A Molecular Dynamics Study with Density Functional Theory and Deep Potential

Qianrui Liu, Denghui Lu, Mohan Chen
Journal of Physics-Condensed Matter, 2020, 32 (14), 144002.
DOI: 10.1088/1361-648X/ab5890

Thermal Transport by Electrons and Ions in Warm Dense Aluminum: A Combined Density Functional Theory and Deep Potential Study

Qianrui Liu, Junyi Li, Mohan Chen
Matter and Radiation at Extremes, 2021, 6 (2).
DOI: 10.1063/5.0030123

Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning

Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing Ma
Journal of Chemical Information and Modeling, 2021, 61 (3), 1066–1082.
DOI: 10.1021/acs.jcim.0c01224

Active Learning a Coarse-Grained Neural Network Model for Bulk Water from Sparse Training Data

TD Loeffler, TK Patra, Chan H
pubs.rsc.org.

Active Learning a Neural Network Model for Gold Clusters\& Bulk from Sparse First Principles Training Data

TD Loeffler, S Manna, TK Patra, Chan H
arxiv.org, 2020.

Active Learning the Potential Energy Landscape for Water Clusters from Sparse Training Data

Troy D. Loeffler, Tarak K. Patra, Henry Chan, Mathew Cherukara, Subramanian K.R.S. Sankaranarayanan
Journal of Physical Chemistry C, 2020, 124 (8), 4907–4916.
DOI: 10.1021/acs.jpcc.0c00047

PDE-Net 2.0: Learning PDEs from Data with a Numeric-Symbolic Hybrid Deep Network

Zichao Long, Yiping Lu, Bin Dong
Journal of Computational Physics, 2019, 399, 108925.
DOI: 10.1016/j.jcp.2019.108925

PANNA: Properties from Artificial Neural Network Architectures

Ruggero Lot, Franco Pellegrini, Yusuf Shaidu, Emine Kucukbenli
Computer Physics Communications, 2020, 256, 107402.
DOI: 10.1016/j.cpc.2020.107402

Deep Learning: New Engine for the Study of Material Microstructures and Physical Properties

G Lu, S Duan
Modern Physics 现代物理, 2019, 2019 (6), 263–276.
DOI: 10.12677/mp.2019.96026

Dataset Construction to Explore Chemical Space with 3D Geometry and Deep Learning

Jianing Lu, Song Xia, Jieyu Lu, Yingkai Zhang
Journal of Chemical Information and Modeling, 2021, 61 (3), 1095–1104.
DOI: 10.1021/acs.jcim.1c00007

Deep Potential Molecular Dynamics Simulation of 100 Million Atoms with Ab Initio Accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

Deep Potential Molecular Dynamics Simulation of 100 Million Atoms with Ab Initio Accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

DP Train, Then DP Compress: Model Compression in Deep Potential Molecular Dynamics

D Lu, W Jiang, Y Chen, L Zhang, W Jia, H Wang
arxiv.org, 2021.

A Unified Picture of the Covalent Bond within Quantum-Accurate Force Fields: From Organic Molecules to Metallic Complexes' Reactivity

Alessandro Lunghi, Stefano Sanvito
Science Advances, 2019, 5 (5), eaaw2210.
DOI: 10.1126/sciadv.aaw2210

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophysical Research Letters, 2021, 48 (13), e2021GL093573.
DOI: 10/gkrt5v

Deep Neural Network Potentials for Diffusional Lithium Isotope Fractionation in Silicate Melts

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geochimica et Cosmochimica Acta, 2021, 303, 38–50.
DOI: 10/gmf625

Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network

Jianing Lu, Cheng Wang, Yingkai Zhang
Journal of Chemical Theory and Computation, 2019, 15 (7), 4113–4121.
DOI: 10.1021/acs.jctc.9b00001

Deep Learning Observables in Computational Fluid Dynamics

KO Lye, S Mishra, D Ray - Journal of Computational Physics, undefined 2020
Elsevier, 2019.

A Fast Neural Network Approach for Direct Covariant Forces Prediction in Complex Multi-Element Extended Systems

Jonathan P. Mailoa, Mordechai Kornbluth, Simon Batzner, Georgy Samsonidze, Stephen T. Lam, Jonathan Vandermause, Chris Ablitt, Nicola Molinari, Boris Kozinsky
Nature Machine Intelligence, 2019, 1 (10), 471–479.
DOI: 10.1038/s42256-019-0098-0

Evaluation of Experimental Alkali Metal Ion-Ligand Noncovalent Bond Strengths with DLPNO-CCSD(T) Method

Bholanath Maity, Yury Minenkov, Luigi Cavallo
Journal of Chemical Physics, 2019, 151 (1), 014301.
DOI: 10.1063/1.5099580

Transferability of Neural Network Potentials for Varying Stoichiometry: Phonons and Thermal Conductivity of Mn\$_x\$Ge\$_y\$ Compounds

Claudia Mangold, Shunda Chen, Giuseppe Barbalinardo, Joerg Behler, Pascal Pochet, Konstantinos Termentzidis, Yang Han, Laurent Chaput, David Lacroix, Davide Donadio
Journal of Applied Physics, 2020, 127 (24), 244901.
DOI: 10/gg7jww

Machine Learning for Metallurgy I. A Neural-Network Potential for Al-Cu

Daniel Marchand, Abhinav Jain, Albert Glensk, W. A. Curtin
Physical Review Materials, 2020, 4 (10).
DOI: 10.1103/physrevmaterials.4.103601

Simulating Diffusion Properties of Solid-State Electrolytes via a Neural Network Potential: Performance and Training Scheme

Aris Marcolongo, Tobias Binninger, Federico Zipoli, Teodoro Laino
2019.

Connection between Liquid and Non-Crystalline Solid Phases in Water

Fausto Martelli, Fabio Leoni, Francesco Sciortino, John Russo
Journal of Chemical Physics, 2020, 153 (10), 104503.
DOI: 10.1063/5.0018923

Deep Learning in Chemistry

Adam C. Mater, Michelle L. Coote
Journal of Chemical Information and Modeling, 2019, 59 (6), 2545–2559.
DOI: 10.1021/acs.jcim.9b00266

Machine-Learning Interatomic Potentials for Materials Science

Y Mishin - Acta Materialia, undefined 2021
Elsevier, 2021.

Machine Learning Enhanced Global Optimization by Clustering Local Environments to Enable Bundled Atomic Energies

Soren A. Meldgaard, Esben L. Kolsbjerg, Bjork Hammer
Journal of Chemical Physics, 2018, 149 (13), 134104.
DOI: 10.1063/1.5048290

Transformative Applications of Machine Learning for Chemical Reactions

M. Meuwly
2021.

Liquid to Crystal Si Growth Simulation Using Machine Learning Force Field

Ling Miao, Lin Wang Wang
Journal of Chemical Physics, 2020, 153 (7).
DOI: 10.1063/5.0011163

Strategies for the Construction of Machine-Learning Potentials for Accurate and Efficient Atomic-Scale Simulations

April M. Miksch, Tobias Morawietz, Johannes Kaestner, Alexander Urban, Nongnuch Artrith
Machine Learning-Science and Technology, 2021, 2 (3), 031001.
DOI: 10.1088/2632-2153/abfd96

Gas Phase Silver Thermochemistry from First Principles

Irina Minenkova, Valery V. Slizney, Luigi Cavallo, Yury Minenkov
Inorganic Chemistry, 2019, 58 (12), 7873–7885.
DOI: 10.1021/acs.inorgchem.9b00556

An Automated Approach for Developing Neural Network Interatomic Potentials with FLAME

H Mirhosseini, H Tahmasbi, SR Kuchana - Computational Materials …, undefined 2021
Elsevier, 2021.

Molecular Dynamics Properties without the Full Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids

Alireza Moradzadeh, N. R. Aluru
Journal of Physical Chemistry Letters, 2019, 10 (24), 7568–7576.
DOI: 10.1021/acs.jpclett.9b02820

Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach

Manuel D. Morales, Javier M. Antelis, Claudia Moreno, Alexander I. Nesterov
Sensors, 2021, 21 (9), 3174.
DOI: 10/gmgfm6

Machine Learning-Accelerated Quantum Mechanics-Based Atomistic Simulations for Industrial Applications

Tobias Morawietz, Nongnuch Artrith
Journal of Computer-Aided Molecular Design, 2021, 35 (4), 557–586.
DOI: 10.1007/s10822-020-00346-6

Transfer Learning of Potential Energy Surfaces for Efficient Atomistic Modeling of Doping and Alloy

Pinghui Mo, Mengchao Shi, Wenze Yao, Jie Liu
IEEE Electron Device Letters, 2020, 41 (4), 633–636.
DOI: 10/gg2bfc

Assessment of Localized and Randomized Algorithms for Electronic Structure

Jonathan E. Moussa, Andrew D. Baczewski
Electronic Structure, 2019, 1 (3), 033001.
DOI: 10.1088/2516-1075/ab2022

The Dynamic Control of the Light Signalling Device in Real-Time

Jan Mrazek, Lucia Duricova Mrazkova, Martin Hromada, Jana Reznickova
MATEC Web of Conferences, 2019, 292, 03014.
DOI: 10/gmgfts

Traffic Control Through Traffic Density

Jan Mrazek, Lucia Duricova Mrazkova, Martin Hromada
2019 3rd European Conference on Electrical Engineering and Computer Science (Eecs 2019), 2019, 19–21.
DOI: 10.1109/EECS49779.2019.00017

Machine Learning for Interatomic Potential Models

Tim Mueller, Alberto Hernandez, Chuhong Wang
Journal of Chemical Physics, 2020, 152 (5), 050902.
DOI: 10.1063/1.5126336

Supervised Learning of Few Dirty Bosons with Variable Particle Number

P Mujal, À Martínez Miguel, A Polls
scipost.org, 2020.

Machine Learning at the Atomic Scale

Felix Musil, Michele Ceriotti
Chimia, 2019, 73 (12), 972–982.
DOI: 10.2533/chimia.2019.972

Non-Empirical Weighted Langevin Mechanics for the Potential Escape Problem: Parallel Algorithm and Application to the Argon Clusters

Yuri S. Nagornov, Ryosuke Akashi
Physica A: Statistical Mechanics and its Applications, 2019, 528, 121481.
DOI: 10.1016/j.physa.2019.121481

Learning Intermolecular Forces at Liquid-Vapor Interfaces

Samuel P. Niblett, Mirza Galib, David T. Limmer
2021.

Recursive Evaluation and Iterative Contraction of N-Body Equivariant Features

Jigyasa Nigam, Sergey Pozdnyakov, Michele Ceriotti
Journal of Chemical Physics, 2020, 153 (12), 121101.
DOI: 10.1063/5.0021116

Quantum-Accurate Magneto-Elastic Predictions with Classical Spin-Lattice Dynamics

Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida
2021.

Ab Initio Phase Diagram and Nucleation of Gallium

Haiyang Niu, Luigi Bonati, Pablo M. Piaggi, Michele Parrinello
Nature Communications, 2020, 11 (1), 2654.
DOI: 10.1038/s41467-020-16372-9

The MLIP Package: Moment Tensor Potentials with MPI and Active Learning

Ivan S. Novikov, Konstantin Gubaev, Evgeny Podryabinkin, Alexander Shapeev
Machine Learning-Science and Technology, 2021, 2 (2), 025002.
DOI: 10.1088/2632-2153/abc9fe

Modeling H2O/Rutile-TiO2(110) Potential Energy Surfaces with Deep Networks

Stefan Oehmcke, Thomas Teusch, Thorben Petersen, Thorsten Kluener, Oliver Kramer
2020 International Joint Conference on Neural Networks (Ijcnn), 2020.

Catalytic Materials and Chemistry Development Using a Synergistic Combination of Machine Learning and Ab Initio Methods

Nilesh Varadan Orupattur, Samir H. Mushrif, Vinay Prasad
Computational Materials Science, 2020, 174, 109474.
DOI: 10.1016/j.commatsci.2019.109474

A Bin and Hash Method for Analyzing Reference Data and Descriptors in Machine Learning Potentials

Martin Leandro Paleico, Joerg Behler
Machine Learning-Science and Technology, 2021, 2 (3), 037001.
DOI: 10.1088/2632-2153/abe663

Machine Learning Assisted Free Energy Simulation of Solution–Phase and Enzyme Reactions

X Pan, R Van, E Epifanovsky, J Ho, J Huang, J Pu
2021.

A DFT Accurate Machine Learning Description of Molten ZnCl2 and Its Mixtures: 1. Potential Development and Properties Prediction of Molten ZnCl2

Gechuanqi Pan, Pin Chen, Hui Yan, Yutong Lu
Computational Materials Science, 2020, 185, 109955.
DOI: 10.1016/j.commatsci.2020.109955

A DFT Accurate Machine Learning Description of Molten ZnCl2 and Its Mixtures: 2. Potential Development and Properties Prediction of ZnCl2-NaCl-KCl Ternary Salt for CSP

Gechuanqi Pan, Jing Ding, Yunfei Du, Duu-Jong Lee, Yutong Lu
Computational Materials Science, 2021, 187, 110055.
DOI: 10.1016/j.commatsci.2020.110055

Accurate and Scalable Graph Neural Network Force Field and Molecular Dynamics with Direct Force Architecture

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozinsky, Jonathan P. Mailoa
Npj Computational Materials, 2021, 7 (1), 73.
DOI: 10.1038/s41524-021-00543-3

Accurate and Scalable Multi-Element Graph Neural Network Force Field and Molecular Dynamics with Direct Force Architecture

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Jonathan P Mailoa
, 33.

A Fourier-Based Machine Learning Technique with Application in Engineering

Michael Peigney
International Journal for Numerical Methods in Engineering, 2021, 122 (3), 866–897.
DOI: 10.1002/nme.6565

Efficient Long-Range Convolutions for Point Clouds

Yifan Peng, Lin Lin, Lexing Ying, Leonardo Zepeda-Núñez
2020.

Simulations Meet Machine Learning in Structural Biology

Adrià Pérez, Gerard Martínez-Rosell, Gianni De Fabritiis
Current Opinion in Structural Biology, 2018, 49, 139–144.
DOI: 10/gdnsnp

Enhancing the Formation of Ionic Defects to Study the Ice Ih/XI Transition with Molecular Dynamics Simulations

Pablo M. Piaggi, Roberto Car
Molecular Physics, 2021.
DOI: 10.1080/00268976.2021.1916634

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M. Piaggi, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, Roberto Car
Journal of Chemical Theory and Computation, 2021, 17 (5), 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Machine Learning Force Fields: Recent Advances and Remaining Challenges

Igor Poltavsky, Alexandre Tkatchenko
Journal of Physical Chemistry Letters, 2021, 12 (28), 6551–6564.
DOI: 10.1021/acs.jpclett.1c01204

On Application of Deep Learning to Simplified Quantum-Classical Dynamics in Electronically Excited States

Evgeny Posenitskiy, Fernand Spiegelman, Didier Lemoine
Machine Learning-Science and Technology, 2021, 2 (3), 035039.
DOI: 10.1088/2632-2153/abfe3f

Atomistic Simulations of the Thermal Conductivity of Liquids

Marcello Puligheddu, Giulia Galli
Physical Review Materials, 2020, 4 (5), 053801.
DOI: 10.1103/PhysRevMaterials.4.053801

A Comprehensive Assessment of Empirical Potentials for Carbon Materials

Cheng Qian, Ben McLean, Daniel Hedman, Feng Ding
APL Materials, 2021, 9 (6).
DOI: 10.1063/5.0052870

OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features

Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R. Manby, Thomas F. Miller
Journal of Chemical Physics, 2020, 153 (12), 124111.
DOI: 10.1063/5.0021955

Interaction Energy Prediction of Organic Molecules Using Deep Tensor Neural Network

Yuan Qi, Hong Ren, Hong Li, Ding-lin Zhang, Hong-qiang Cui, Jun-ben Weng, Guo-hui Li, Gui-yan Wang, Yan Li
Chinese Journal of Chemical Physics, 2021, 34 (1), 112–124.
DOI: 10.1063/1674-0068/cjcp2009163

Machine Learning of Atomic Forces from Quantum Mechanics: A Model Based on Pairwise Interatomic Forces

I Ramzan, L Kong, R A Bryce, N A Burton
, 39.

Unsupervised Learning of Atomic Environments from Simple Features

Wesley F. Reinhart
Computational Materials Science, 2021, 196, 110511.
DOI: 10.1016/j.commatsci.2021.110511

Halogen Bond Structure and Dynamics from Molecular Simulations

Richard C. Remsing, Michael L. Klein
Journal of Physical Chemistry B, 2019, 123 (29), 6266–6273.
DOI: 10.1021/acs.jpcb.9b04820

Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System

Hong-Bin Ren, Lei Wang, Xi Dai
Chinese Physics Letters, 2021, 38 (5), 050701.
DOI: 10.1088/0256-307X/38/5/050701

Spatial Density Neural Network Force Fields with First-Principles Level Accuracy and Application to Thermal Transport

Alejandro Rodriguez, Yinqiao Liu, Ming Hu
Physical Review B, 2020, 102 (3), 035203.
DOI: 10.1103/PhysRevB.102.035203

Biophysical Analysis of SARS-CoV-2 Transmission and Theranostic Development via N Protein Computational Characterization

Godfred O. Sabbih, Maame A. Korsah, Jaison Jeevanandam, Michael K. Danquah
Biotechnology Progress, 2021, 37 (2), e3096.
DOI: 10.1002/btpr.3096

Active Learning of Potential-Energy Surfaces of Weakly-Bound Complexes with Regression-Tree Ensembles

Yahya Saleh, Vishnu Sanjay, Armin Iske, Andrey Yachmenev, Jochen Küpper
2021.

Closing the Gap Between Modeling and Experiments in the Self-Assembly of Biomolecules at Interfaces and in Solution

Janani Sampath, Sarah Alamdari, Jim Pfaendtner
Chemistry of Materials, 2020, 32 (19), 8043–8059.
DOI: 10.1021/acs.chemmater.0c01891

Scalable Neural Networks for the Efficient Learning of Disordered Quantum Systems

N. Saraceni, S. Cantori, S. Pilati
Physical Review E, 2020, 102 (3).
DOI: 10.1103/physreve.102.033301

Molecular Force Fields with Gradient-Domain Machine Learning: Construction and Application to Dynamics of Small Molecules with Coupled Cluster Forces

Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky, Klaus-Robert Müller, Alexandre Tkatchenko
The Journal of Chemical Physics, 2019, 150 (11), 114102.
DOI: 10/ghqtd7

Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids

Christoph Scherer, Rene Scheid, Denis Andrienko, Tristan Bereau
Journal of Chemical Theory and Computation, 2020, 16 (5), 3194–3204.
DOI: 10.1021/acs.jctc.9b01256

From DFT to Machine Learning: Recent Approaches to Materials Science-a Review

Gabriel R. Schleder, Antonio C. M. Padilha, Carlos Mera Acosta, Marcio Costa, Adalberto Fazzio
Journal of Physics-Materials, 2019, 2 (3), 032001.
DOI: 10.1088/2515-7639/ab084b

Recent Advances and Applications of Machine Learning in Solid-State Materials Science

Jonathan Schmidt, Mario R. G. Marques, Silvana Botti, Miguel A. L. Marques
Npj Computational Materials, 2019, 5, 83.
DOI: 10.1038/s41524-019-0221-0

Committee Neural Network Potentials Control Generalization Errors and Enable Active Learning

Christoph Schran, Krystof Brezina, Ondrej Marsalek
Journal of Chemical Physics, 2020, 153 (10), 104105.
DOI: 10.1063/5.0016004

Transferability of Machine Learning Potentials: Protonated Water Neural Network Potential Applied to the Protonated Water Hexamer

Christoph Schran, Fabien Brieuc, Dominik Marx
Journal of Chemical Physics, 2021, 154 (5), 051101.
DOI: 10.1063/5.0035438

Schnet–a Deep Learning Architecture for Molecules and Materials

Kristof T. Schütt, Huziel E. Sauceda, P.-J. Kindermans, Alexandre Tkatchenko, K.-R. Müller
The Journal of Chemical Physics, 2018, 148 (24), 241722.
DOI: 10.1063/1.5019779

SchNetPack: A Deep Learning Toolbox For Atomistic Systems

K. T. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.-R. Müller
Journal of Chemical Theory and Computation, 2019, 15 (1), 448–455.
DOI: 10/gfrbqm

Differentiable Sampling of Molecular Geometries with Uncertainty-Based Adversarial Attacks

Daniel Schwalbe-Koda, Aik Rui Tan, Rafael Gómez-Bombarelli
2021.

Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force-Fields

Bumjoon Seo, Zih-Yu Lin, Qiyuan Zhao, Michael A Webb, M Savoie
, 43.

Anharmonic Raman Spectra Simulation of Crystals from Deep Neural Networks

Honghui Shang, Haidi Wang
Aip Advances, 2021, 11 (3), 035105.
DOI: 10.1063/5.0040190

Modelling Bulk Electrolytes and Electrolyte Interfaces with Atomistic Machine Learning

Yunqi Shao, Lisanne Knijff, Florian M. Dietrich, Kersti Hermansson, Chao Zhang
Batteries \& Supercaps, 2021, 4 (4), 585–595.
DOI: 10.1002/batt.202000262

PiNN: A Python Library for Building Atomic Neural Networks of Molecules and Materials

Yunqi Shao, Matti Hellstrom, Pavlin D. Mitev, Lisanne Knijff, Chao Zhang
Journal of Chemical Information and Modeling, 2020, 60 (3), 1184–1193.
DOI: 10.1021/acs.jcim.9b00994

Elinvar Effect in Beta-Ti Simulated by on-the-Fly Trained Moment Tensor Potential

Alexander Shapeev, Evgeny Podryabinkin, Konstantin Gubaev, Ferenc Tasnadi, Igor A. Abrikosov
New Journal of Physics, 2020, 22 (11), 113005.
DOI: 10.1088/1367-2630/abc392

PFNN: A Penalty-Free Neural Network Method for Solving a Class of Second-Order Boundary-Value Problems on Complex Geometries

Hailong Sheng, Chao Yang
Journal of Computational Physics, 2021, 428, 110085.
DOI: 10.1016/j.jcp.2020.110085

Quantum Trajectory Mean-Field Method for Nonadiabatic Dynamics in Photochemistry

Lin Shen, Diandong Tang, Binbin Xie, Wei-Hai Fang
Journal of Physical Chemistry A, 2019, 123 (34), 7337–7350.
DOI: 10.1021/acs.jpca.9b03480

Application of Genetic Algorithm in the Global Structure Optimization of Catalytic System

Xiangcheng Shi, Zhijian Zhao, Jinlong Gong
Huagong Xuebao/CIESC Journal, 2021, 72 (1), 27–41.
DOI: 10.11949/0438-1157.20201037

Learning Gradient Fields for Molecular Conformation Generation

Chence Shi, Shitong Luo, Minkai Xu, Jian Tang
2021.

Computational and Training Requirements for Interatomic Potential Based on Artificial Neural Network for Estimating Low Thermal Conductivity of Silver Chalcogenides

Kohei Shimamura, Yusuke Takeshita, Shogo Fukushima, Akihide Koura, Fuyuki Shimojo
Journal of Chemical Physics, 2020, 153 (23), 234301.
DOI: 10.1063/5.0027058

Estimating Thermal Conductivity of α-Ag2Se Using ANN Potential with Chebyshev Descriptor

Kohei Shimamura, Yusuke Takeshita, Shogo Fukushima, Akihide Koura, Fuyuki Shimojo
Chemical Physics Letters, 2021, 778, 138748.
DOI: 10/gj42cx

Guidelines for Creating Artificial Neural Network Empirical Interatomic Potential from First-Principles Molecular Dynamics Data under Specific Conditions and Its Application to Alpha-Ag2Se

Kohei Shimamura, Shogo Fukushima, Akihide Koura, Fuyuki Shimojo, Masaaki Misawa, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, Takashi Matsubara, Shigenori Tanaka
Journal of Chemical Physics, 2019, 151 (12), 124303.
DOI: 10.1063/1.5116420

Water Dipole and Quadrupole Moment Contributions to the Ion Hydration Free Energy by the Deep Neural Network Trained with Ab Initio Molecular Dynamics Data

Yu Shi, Carrie C Doyle, Thomas L Beck
, 20.

Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties

Paul Sinz, Michael W. Swift, Xavier Brumwell, Jialin Liu, Kwang Jin Kim, Yue Qi, Matthew Hirn
Journal of Chemical Physics, 2020, 153 (8), 084109.
DOI: 10.1063/5.0016020

Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide

Ganesh Sivaraman, Leighanne Gallington, Anand Narayanan Krishnamoorthy, Marius Stan, Gábor Csányi, Álvaro Vázquez-Mayagoitia, Chris J. Benmore
Physical Review Letters, 2021, 126 (15), 156002.
DOI: 10/gkx66f

The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules

Justin S. Smith, Roman Zubatyuk, Benjamin Nebgen, Nicholas Lubbers, Kipton Barros, Adrian E. Roitberg, Olexandr Isayev, Sergei Tretiak
Scientific Data, 2020, 7 (1), 134.
DOI: 10/gh48xw

Raman Spectrum and Polarizability of Liquid Water from Deep Neural Networks

Grace M. Sommers, Marcos F. Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Physical Chemistry Chemical Physics, 2020, 22 (19), 10592–10602.
DOI: 10.1039/d0cp01893g

Machine Learning for Metallurgy II. A Neural-Network Potential for Magnesium

Markus Stricker, Binglun Yin, Eleanor Mak, W. A. Curtin
Physical Review Materials, 2020, 4 (10).
DOI: 10.1103/physrevmaterials.4.103602

Toward Exascale Design of Soft Mesoscale Materials

S Succi, G Amati, F Bonaccorso, M Lauricella - Journal of …, undefined 2020
Elsevier, 2020.

Gaussian Process Model of 51-Dimensional Potential Energy Surface for Protonated Imidazole Dimer

Hiroki Sugisawa, Tomonori Ida, R. Krems
Journal of Chemical Physics, 2020, 153 (11), 114101.
DOI: 10.1063/5.0023492

TeaNet: Universal Neural Network Interatomic Potential Inspired by Iterative Electronic Relaxations

So Takamoto, Satoshi Izumi, Ju Li
2019.

Interatomic Potential in a Simple Dense Neural Network Representation

Ka-Ming Tam, Nicholas Walker, Samuel Kellar, Mark Jarrell
2019.

Prediction of Formation Energies of Large-Scale Disordered Systems via Active-Learning-Based Executions of Ab Initio Local-Energy Calculations: A Case Study on a Fe Random Grain Boundary Model with Millions of Atoms

Tomoyuki Tamura, Masayuki Karasuyama
Physical Review Materials, 2020, 4 (11).
DOI: 10.1103/physrevmaterials.4.113602

ChebNet: Efficient and Stable Constructions of Deep Neural Networks with Rectified Power Units Using Chebyshev Approximations

Shanshan Tang, Bo Li, Haijun Yu
2019.

Development of Interatomic Potential for Al-Tb Alloys Using a Deep Neural Network Learning Method

L. Tang, Z. J. Yang, T. Q. Wen, K. M. Ho, M. J. Kramer, C. Z. Wang
Physical Chemistry Chemical Physics, 2020, 22 (33), 18467–18479.
DOI: 10.1039/d0cp01689f

Short- and Medium-Range Orders in Al90Tb10 Glass and Their Relation to the Structures of Competing Crystalline Phases

L. Tang, Z. J. Yang, T. Q. Wen, K. M. Ho, M. J. Kramer, C. Z. Wang
Acta Materialia, 2021, 204, 116513.
DOI: 10.1016/j.actamat.2020.116513

Machine Learning and Molecular Design of Self-Assembling Pi-Conjugated Oligopeptides

Bryce A. Thurston, Andrew L. Ferguson
Molecular Simulation, 2018, 44 (11), 930–945.
DOI: 10.1080/08927022.2018.1469754

The Repetitive Local Sampling and the Local Distribution Theory

Pu Tian
, 32.

Combining Machine Learning Potential and Structure Prediction for Accelerated Materials Design and Discovery

Qunchao Tong, Pengyue Gao, Hanyu Liu, Yu Xie, Jian Lv, Yanchao Wang, Jijun Zhao
Journal of Physical Chemistry Letters, 2020, 11 (20), 8710–8720.
DOI: 10.1021/acs.jpclett.0c02357

Machine Learning Metadynamics Simulation of Reconstructive Phase Transition

Qunchao Tong, Xiaoshan Luo, Adebayo A. Adeleke, Pengyue Gao, Yu Xie, Hanyu Liu, Quan Li, Yanchao Wang, Jian Lv, Yansun Yao, Yanming Ma
Physical Review B, 2021, 103 (5), 054107.
DOI: 10/gmf5zv

Geometric Prediction: Moving Beyond Scalars

Raphael J. L. Townshend, Brent Townshend, Stephan Eismann, Ron O. Dror
2020.

Transferrable End-to-End Learning for Protein Interface Prediction

Raphael JL Townshend, Rishi Bedi, Ron O. Dror
2018.

A Machine Learning Based Deep Potential for Seeking the Low-Lying Candidates of Al Clusters

P. Tuo, X. B. Ye, B. C. Pan
Journal of Chemical Physics, 2020, 152 (11), 114105.
DOI: 10.1063/5.0001491

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

Oliver T. Unke, Markus Meuwly
Journal of Chemical Theory and Computation, 2019, 15 (6), 3678–3693.
DOI: 10.1021/acs.jctc.9b00181

SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects

Oliver T. Unke, Stefan Chmiela, Michael Gastegger, Kristof T. Schütt, Huziel E. Sauceda, Klaus-Robert Müller
2021.

Active Learning of Reactive Bayesian Force Fields: Application to Heterogeneous Hydrogen-Platinum Catalysis Dynamics

J Vandermause, Y Xie, JS Lim, CJ Owen - arXiv preprint arXiv …, undefined 2021
arxiv.org, 2021.

On-the-Fly Active Learning of Interpretable Bayesian Force Fields for Atomistic Rare Events

Jonathan Vandermause, Steven B. Torrisi, Simon Batzner, Yu Xie, Lixin Sun, Alexie M. Kolpak, Boris Kozinsky
Npj Computational Materials, 2020, 6 (1), 20.
DOI: 10.1038/s41524-020-0283-z

On-the-Fly Bayesian Active Learning of Interpretable Force-Fields for Atomistic Rare Events

J Vandermause, SB Torrisi, S Batzner
projects.iq.harvard.edu, 2019.

Challenges for Machine Learning Force Fields in Reproducing Potential Energy Surfaces of Flexible Molecules

Valentin Vassilev-Galindo, Gregory Fonseca, Igor Poltavsky, Alexandre Tkatchenko
Journal of Chemical Physics, 2021, 154 (9), 094119.
DOI: 10.1063/5.0038516

Bayesian Machine Learning Approach to the Quantification of Uncertainties on Ab Initio Potential Energy Surfaces

S. Venturi, R. L. Jaffe, M. Panesi
Journal of Physical Chemistry A, 2020, 124 (25), 5129–5146.
DOI: 10.1021/acs.jpca.0c02395

Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers

Niki Vergadou, Doros N. Theodorou
Membranes, 2019, 9 (8), 98.
DOI: 10.3390/membranes9080098

Faster Exact Exchange in Periodic Systems Using Single-Precision Arithmetic

John Vinson
Journal of Chemical Physics, 2020, 153 (20), 204106.
DOI: 10.1063/5.0030493

Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy

Zhilong Wang, Yanqiang Han, Jinjin Li, Xiao He
Journal of Physical Chemistry B, 2020, 124 (15), 3027–3035.
DOI: 10.1021/acs.jpcb.0c01370

Complex Reaction Network Thermodynamic and Kinetic Autoconstruction Based on \emphAb Initio Statistical Mechanics: A Case Study of O \textsubscript2 Activation on Ag \textsubscript4 Clusters

Weiqi Wang, Xiangyue Liu, Jesús Pérez-Ríos
The Journal of Physical Chemistry A, 2021, 125 (25), 5670–5680.
DOI: 10/gmfw5m

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Frontiers in Chemistry, 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Deep Learning Inter-Atomic Potential Model for Accurate Irradiation Damage Simulations

Hao Wang, Xun Guo, Linfeng Zhang, Han Wang, Jianming Xue
Applied Physics Letters, 2019, 114 (24), 244101.
DOI: 10.1063/1.5098061

Deep-Learning Interatomic Potential for Irradiation Damage Simulations in MoS2 with Ab Initial Accuracy

Hao Wang, Xun Guo, Jianming Xue
2020.

DeePMD-Kit: A Deep Learning Package for Many-Body Potential Energy Representation and Molecular Dynamics

Han Wang, Linfeng Zhang, Jiequn Han, Weinan E
Computer Physics Communications, 2018, 228, 178–184.
DOI: 10.1016/j.cpc.2018.03.016

Differentiable Molecular Simulations for Control and Learning

Wujie Wang, Simon Axelrod, Rafael Gómez-Bombarelli
2020.

Electronically Driven 1D Cooperative Diffusion in a Simple Cubic Crystal

Yong Wang, Junjie Wang, Andreas Hermann, Cong Liu, Hao Gao, Erio Tosatti, Hui-Tian Wang, Dingyu Xing, Jian Sun
Physical Review X, 2021, 11 (1), 011006.
DOI: 10.1103/PhysRevX.11.011006

Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach

Jiang Wang, Stefan Chmiela, Klaus-Robert Mueller, Frank Noe, Cecilia Clementi
Journal of Chemical Physics, 2020, 152 (19).
DOI: 10.1063/5.0007276

An Extendible, Graph-Neural-Network-Based Approach for Accurate Force Field Development of Large Flexible Organic Molecules

Xufei Wang, Yuanda Xu, Han Zheng, Kuang Yu
arxiv.org, 2021.

Machine Learning of Coarse-Grained Molecular Dynamics Force Fields

Jiang Wang, Simon Olsson, Christoph Wehmeyer, Adria Perez, Nicholas E. Charron, Gianni de Fabritiis, Frank Noe, Cecilia Clementi
Acs Central Science, 2019, 5 (5), 755–767.
DOI: 10.1021/acscentsci.8b00913

Multi-Body Effects in a Coarse-Grained Protein Force Field

Jiang Wang, Nicholas Charron, Brooke Husic, Simon Olsson, Frank Noé, Cecilia Clementi
Journal of Chemical Physics, 2021, 154 (16).
DOI: 10.1063/5.0041022

Predicting Adsorption Ability of Adsorbents at Arbitrary Sites for Pollutants Using Deep Transfer Learning

Zhilong Wang, Haikuo Zhang, Jiahao Ren, Xirong Lin, Tianli Han, Jinyun Liu, Jinjin Li
Npj Computational Materials, 2021, 7 (1), 19.
DOI: 10.1038/s41524-021-00494-9

Symmetry-Adapted Graph Neural Networks for Constructing Molecular Dynamics Force Fields

Zun Wang, Chong Wang, Sibo Zhao, Shiqiao Du, Yong Xu, Bing-Lin Gu, Wenhui Duan
2021.

Integrating Machine Learning with Physics-Based Modeling

E Weinan, Jiequn Han, Zhang Linfeng
2020.

Properties of Alpha-Brass Nanoparticles. 1. Neural Network Potential Energy Surface

Jan Weinreich, Anton Roemer, Martin Leandro Paleico, Joerg Behler
Journal of Physical Chemistry C, 2020, 124 (23), 12682–12695.
DOI: 10.1021/acs.jpcc.0c00559

Development of a Deep Machine Learning Interatomic Potential for Metalloid-Containing Pd-Si Compounds

Tongqi Wen, Cai-Zhuang Wang, M. J. Kramer, Yang Sun, Beilin Ye, Haidi Wang, Xueyuan Liu, Chao Zhang, Feng Zhang, Kai-Ming Ho, Nan Wang
Physical Review B, 2019, 100 (17), 174101.
DOI: 10.1103/PhysRevB.100.174101

Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics

Julia Westermayr, Michael Gastegger, Philipp Marquetand
Journal of Physical Chemistry Letters, 2020, 11 (10), 3828–3834.
DOI: 10.1021/acs.jpclett.0c00527

Machine Learning and Excited-State Molecular Dynamics

Julia Westermayr, Philipp Marquetand
Machine Learning: Science and Technology, 2020, 1 (4), 043001.
DOI: 10/gksxpp

Atom-Density Representations for Machine Learning

Michael J. Willatt, Flix Musil, Michele Ceriotti
Journal of Chemical Physics, 2019, 150 (15), 154110.
DOI: 10.1063/1.5090481

Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements

Michael J. Willatt, Félix Musil, Michele Ceriotti
Physical Chemistry Chemical Physics, 2018, 20 (47), 29661–29668.
DOI: 10/gfz26d

Targeted Free Energy Estimation via Learned Mappings

Peter Wirnsberger, Andrew J. Ballard, George Papamakarios, Stuart Abercrombie, Sebastien Racaniere, Alexander Pritzel, Danilo Jimenez Rezende, Charles Blundell
Journal of Chemical Physics, 2020, 153 (14), 144112.
DOI: 10.1063/5.0018903

Active Learning Approach to Optimization of Experimental Control

Y Wu, Z Meng, K Wen, C Mi, Zhang J
iopscience.iop.org.

Deep Learning of Accurate Force Field of Ferroelectric HfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Physical Review B, 2021, 103 (2), 024108.
DOI: 10.1103/PhysRevB.103.024108

Deep Learning of Accurate Force Field of Ferroelectric HfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Physical Review B, 2021, 103 (2), 024108.
DOI: 10.1103/PhysRevB.103.024108

Modeling of Metal Nanoparticles: Development of Neural-Network Interatomic Potential Inspired by Features of the Modified Embedded-Atom Method

Feifeng Wu, Hang Min, Yanwei Wen, Rong Chen, Yunkun Zhao, Mike Ford, Bin Shan
Physical Review B, 2020, 102 (14), 144107.
DOI: 10.1103/PhysRevB.102.144107

High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity

Yi Xia, Vinay Hegde, Koushik Pal, Xia Hua, Dale Gaines, Shane Patel, Jiangang He, Muratahan Aykol, Chris Wolverton
Physical Review X, 2020, 10 (4), 041029.
DOI: 10.1103/PhysRevX.10.041029

Ab-Initio Study of Interacting Fermions at Finite Temperature with Neural Canonical Transformation

Hao Xie, Linfeng Zhang, Lei Wang
arxiv.org, 2021.

Bayesian Force Fields from Active Learning for Simulation of Inter-Dimensional Transformation of Stanene

Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, Boris Kozinsky
Npj Computational Materials, 2021, 7 (1), 40.
DOI: 10.1038/s41524-021-00510-y

Graph Dynamical Networks for Unsupervised Learning of Atomic Scale Dynamics in Materials

Tian Xie, Arthur France-Lanord, Yanming Wang, Yang Shao-Horn, Jeffrey C. Grossman
Nature Communications, 2019, 10, 2667.
DOI: 10.1038/s41467-019-10663-6

Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method

Mingyuan Xu, Tong Zhu, John Z H Zhang
, 18.

Automatically Constructed Neural Network Potentials for Molecular Dynamics Simulation of Zinc Proteins

Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Frontiers in Chemistry, 2021, 9, 692200.
DOI: 10.3389/fchem.2021.692200

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
Journal of Physical Chemistry C, 2020, 124 (30), 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Ab Initio Molecular Dynamics Simulation of Zinc Metalloproteins with Enhanced Self-Organizing Incremental High Dimensional Neural Network

Mingyuan Xu, Tong Zhu, John Z H Zhang
, 27.

Isotope Effects in Molecular Structures and Electronic Properties of Liquid Water via Deep Potential Molecular Dynamics Based on the SCAN Functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Physical Review B, 2020, 102 (21), 214113.
DOI: 10.1103/PhysRevB.102.214113

Isotope Effects in Molecular Structures and Electronic Properties of Liquid Water via Deep Potential Molecular Dynamics Based on the SCAN Functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Physical Review B, 2020, 102 (21), 214113.
DOI: 10.1103/PhysRevB.102.214113

Molecular Dynamics Simulation of Zinc Ion in Water with an Ab Initio Based Neural Network Potential

Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Journal of Physical Chemistry A, 2019, 123 (30), 6587–6595.
DOI: 10.1021/acs.jpca.9b04087

De Novo Molecule Design through Molecular Generative Model Conditioned by 3D Information of Protein Binding Sites

Mingyuan Xu, Ting Ran, Hongming Chen
, 25.

Optimizing Training Data Set for the Machine Learning Potential of Li-Si Alloys via Structural Similarity-Based Screening

Nan Xu, Chen Li, Yao Shi, Qing Shao, Yi He
arxiv.org, 2021.

Perspective on Computational Reaction Prediction Using Machine Learning Methods in Heterogeneous Catalysis

Jiayan Xu, Xiao-Ming Cao, P. Hu
Physical Chemistry Chemical Physics, 2021, 23 (19), 11155–11179.
DOI: 10.1039/d1cp01349a

Using Metadynamics to Build Neural Network Potentials for Reactive Events: The Case of Urea Decomposition in Water

M Yang, L Bonati, D Polino, Parrinello M
Elsevier, 2021.

Construction of a Neural Network Energy Function for Protein Physics

Huan Yang, Zhaoping Xiong, Francesco Zonta
2021.
DOI: 10.1101/2021.04.26.441401

Role of Water in the Reaction Mechanism and Endo/Exo Selectivity of 1,3-Dipolar Cycloadditions Elucidated by Quantum Chemistry and Machine Learning

Xin Yang, Jun Zou, Yifei Wang, Ying Xue, Shengyong Yang
Chemistry-a European Journal, 2019, 25 (35), 8289–8303.
DOI: 10.1002/chem.201900617

Active Learning Algorithm for Computational Physics

J Yao, Y Wu, J Koo, B Yan, Zhai H
APS, 2020, 2 (1), 13287.
DOI: 10.1103/physrevresearch.2.013287

Nuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural Network

Yi Yao, Yosuke Kanai
The Journal of Physical Chemistry Letters, 2021, 12 (27), 6354–6362.
DOI: 10/gk5v27

Atomic Energy Mapping of Neural Network Potential

Dongsun Yoo, Kyuhyun Lee, Wonseok Jeong, Dongheon Lee, Satoshi Watanabe, Seungwu Han
Physical Review Materials, 2019, 3 (9), 093802.
DOI: 10.1103/PhysRevMaterials.3.093802

A Transferable Active-Learning Strategy for Reactive Molecular Force Fields

Tom A. Young, Tristan Johnston-Wood, Volker L. Deringer, Fernanda Duarte
Chemical Science, 2021.
DOI: 10.1039/d1sc01825f

When Do Short-Range Atomistic Machine-Learning Models Fall Short?

Shuwen Yue, Maria Carolina Muniz, Marcos F. Calegari Andrade, Linfeng Zhang, Roberto Car, Athanassios Z. Panagiotopoulos
The Journal of Chemical Physics, 2021, 154 (3), 034111.
DOI: 10/gkcq6f

Explore the Chemical Space of Linear Alkanes Pyrolysis via Deep Potential Generator

J Zeng, L Zhang, H Wang, T Zhu
2020.

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

J Zeng, TJ Giese, Ş Ekesan, DM York
2021.

Complex Reaction Processes in Combustion Unraveled by Neural Network-Based Molecular Dynamics Simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Nature Communications, 2020, 11 (1), 5713.
DOI: 10.1038/s41467-020-19497-z

Complex Reaction Processes in Combustion Unraveled by Neural Network-Based Molecular Dynamics Simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Nature Communications, 2020, 11 (1), 5713.
DOI: 10.1038/s41467-020-19497-z

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy \& Fuels, 2021, 35 (1), 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Neural Network Based in Silico Simulation of Combustion Reactions

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John ZH Zhang
arxiv.org, 2019.

Deep Density: Circumventing the Kohn-Sham Equations via Symmetry Preserving Neural Networks

Leonardo Zepeda-Núñez, Yixiao Chen, Jiefu Zhang, Weile Jia, Linfeng Zhang, Lin Lin
Elsevier, 2019.

Active Learning of Many-Body Configuration Space: Application to the Cs+-Water MB-Nrg Potential Energy Function as a Case Study

Yaoguang Zhai, Alessandro Caruso, Sicun Gao, Francesco Paesani
Journal of Chemical Physics, 2020, 152 (14), 144103.
DOI: 10.1063/5.0002162

BubbleNet: Inferring Micro-Bubble Dynamics with Semi-Physics-Informed Deep Learning

Hanfeng Zhai, Guohui Hu
2021.

Machine Learning for Multi-Scale Molecular Modeling: Theories, Algorithms, and Applications

L Zhang
2020.

Accelerating Atomistic Simulations with Piecewise Machine-Learned Ab Initio Potentials at a Classical Force Field-like Cost

Yaolong Zhang, Ce Hu, Bin Jiang
Physical Chemistry Chemical Physics, 2021, 23 (3), 1815–1821.
DOI: 10.1039/d0cp05089j

Active Learning of Uniformly Accurate Interatomic Potentials for Materials Simulation

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, Weinan E
Physical Review Materials, 2019, 3 (2), 023804.
DOI: 10.1103/PhysRevMaterials.3.023804

Adaptive Coupling of a Deep Neural Network Potential to a Classical Force Field

Linfeng Zhang, Han Wang, Weinan E
The Journal of chemical physics, 2018, 149 (15), 154107.
DOI: 10.1063/1.5042714

Anomalous Phase Separation and Hidden Coarsening of Super-Clusters in the Falicov-Kimball Model

Sheng Zhang, Puhan Zhang, Gia-Wei Chern
2021.

Arrested Phase Separation in Double-Exchange Models: Machine-Learning Enabled Large-Scale Simulation

Puhan Zhang, Gia-Wei Chern
2021.

Bridging the Gap between Direct Dynamics and Globally Accurate Reactive Potential Energy Surfaces Using Neural Networks

Yaolong Zhang, Xueyao Zhou, Bin Jiang
Journal of Physical Chemistry Letters, 2019, 10 (6), 1185–1191.
DOI: 10.1021/acs.jpclett.9b00085

Crystallization of the P3Sn4 Phase upon Cooling P2Sn5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential

Chao Zhang, Yang Sun, Hai-Di Wang, Feng Zhang, Tong-Qi Wen, Kai-Ming Ho, Cai-Zhuang Wang
Journal of Physical Chemistry C, 2021, 125 (5), 3127–3133.
DOI: 10.1021/acs.jpcc.0c08873

DeePCG: Constructing Coarse-Grained Models via Deep Neural Networks

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E. Weinan
2018, 149 (3).
DOI: 10.1063/1.5027645

Deep Neural Network for the Dielectric Response of Insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, E. Weinan, Roberto Car
Physical Review B, 2020, 102 (4), 041121.
DOI: 10.1103/PhysRevB.102.041121

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, E. Weinan
Physical Review Letters, 2018, 120 (14), 143001.
DOI: 10.1103/PhysRevLett.120.143001

DP-GEN: A Concurrent Learning Platform for the Generation of Reliable Deep Learning Based Potential Energy Models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, E. Weinan
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties

Yaolong Zhang, Sheng Ye, Jinxiao Zhang, Ce Hu, Jun Jiang, Bin Jiang
The Journal of Physical Chemistry B, 2020, 124 (33), 7284–7290.
DOI: 10.1021/acs.jpcb.0c06926

Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation

Yaolong Zhang, Ce Hu, Bin Jiang
Journal of Physical Chemistry Letters, 2019, 10 (17), 4962–4967.
DOI: 10.1021/acs.jpclett.9b02037

Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation

Yaolong Zhang, Ce Hu, Bin Jiang
Journal of Physical Chemistry Letters, 2019, 10 (17), 4962–4967.
DOI: 10.1021/acs.jpclett.9b02037

End-to-End Symmetry Preserving Inter-Atomic Potential Energy Model for Finite and Extended Systems

Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, Weinan E
2018.
DOI: arXiv:1805.09003

Global Optimization of Chemical Cluster Structures: Methods, Applications, and Challenges

Jun Zhang, Vassiliki-Alexandra Glezakou
International Journal of Quantum Chemistry, 2021, 121 (7), e26553.
DOI: 10.1002/qua.26553

Isotope Effects in X-Ray Absorption Spectra of Liquid Water

Chunyi Zhang, Linfeng Zhang, Jianhang Xu, Fujie Tang, Biswajit Santra, Xifan Wu
Physical Review B, 2020, 102 (11), 115155.
DOI: 10.1103/PhysRevB.102.115155

A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks

Yaoyu Zhang, Tao Luo, Zheng Ma, Zhi-Qin John Xu
Chinese Physics Letters, 2021, 38 (3), 038701.
DOI: 10.1088/0256-307X/38/3/038701

Machine Learning Dynamics of Phase Separation in Correlated Electron Magnets

Puhan Zhang, Preetha Saha, Gia-Wei Chern
2020.

Molecular CT: Unifying Geometry and Representation Learning for Molecules at Different Scales

Jun Zhang, Yaqiang Zhou, Yao-Kun Lei, Yi Isaac Yang, Yi Qin Gao
, 14.

Monge-Amp\$\textbackslash backslash\$ere Flow for Generative Modeling

Linfeng Zhang, Lei Wang
2018.

A Perspective on Deep Learning for Molecular Modeling and Simulations

Jun Zhang, Yao-Kun Lei, Zhen hZang, Junhan Chang, Maodong Li, Xu Han, Lijiang Yang, Yi Isaac Yang, Yi Qin Gao
Journal of Physical Chemistry A, 2020, 124 (34), 6745–6763.
DOI: 10.1021/acs.jpca.0c04473

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, E. Weinan
Physical Review Letters, 2021, 126 (23), 236001.
DOI: 10.1103/PhysRevLett.126.236001

Reinforced Dynamics for Enhanced Sampling in Large Atomic and Molecular Systems

Linfeng Zhang, Han Wang, Weinan E
The Journal of chemical physics, 2018, 148 (12), 124113.
DOI: 10.1063/1.5019675

Reinforcement Learning for Multi-Scale Molecular Modeling

Jun Zhang, Yao-Kun Lei, Yi Isaac Yang, Yi Qin Gao
, 26.

A Type of Generalization Error Induced by Initialization in Deep Neural Networks

Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, Zheng Ma
, 21.

Warm Dense Matter Simulation via Electron Temperature Dependent Deep Potential Molecular Dynamics

Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen
Physics of Plasmas, 2020, 27 (12), 122704.
DOI: 10.1063/5.0023265

Learning the Physics of Pattern Formation from Images

Hongbo Zhao, Brian D. Storey, Richard D. Braatz, Martin Z. Bazant
Physical Review Letters, 2020, 124 (6), 060201.
DOI: 10.1103/PhysRevLett.124.060201

Theoretical Prediction on the Redox Potentials of Rare-Earth Ions by Deep Potentials

Jia Zhao, Wenshuo Liang, Guimin Lu
Ionics, 2021, 27 (5), 2079–2088.
DOI: 10/gmfwvw

Retention and Recycling of Deuterium in Liquid Lithium-Tin Slab Studied by First-Principles Molecular Dynamics

Daye Zheng, Zhen-Xiong Shen, Mohan Chen, Xinguo Ren, Lixin He
Journal of Nuclear Materials, 2021, 543, 152542.
DOI: 10.1016/j.jnucmat.2020.152542

Atomic-State-Dependent Screening Model for Hot and Warm Dense Plasmas

Fuyang Zhou, Yizhi Qu, Junwen Gao, Yulong Ma, Yong Wu, Jianguo Wang
Communications Physics, 2021, 4 (1), 148.
DOI: 10.1038/s42005-021-00652-x

Frame-Independent Vector-Cloud Neural Network for Nonlocal Constitutive Modelling on Arbitrary Grids

Xu-Hui Zhou, Jiequn Han, Heng Xiao
2021.

Structure and Dynamics of Supercooled Liquid Ge \textsubscript2 Sb \textsubscript2 Te \textsubscript5 from Machine‐Learning‐Driven Simulations

Yu-Xing Zhou, Han-Yi Zhang, Volker L. Deringer, Wei Zhang
physica status solidi (RRL) – Rapid Research Letters, 2021, 15 (3), 2000403.
DOI: 10/gmf6g6

Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties*

Lin Zhuan, Qijun Ye, Ding Pan, Xin-Zheng Li
Chinese Physics Letters, 2020, 37 (4), 043101.
DOI: 10.1088/0256-307X/37/4/043101

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence

Tetiana Zubatiuk, Olexandr Isayev
Accounts of Chemical Research, 2021, 54 (7), 1575–1585.
DOI: 10.1021/acs.accounts.0c00868

Machine Learned Hückel Theory: Interfacing Physics and Deep Neural Networks

Tetiana Zubatiuk, Benjamin Nebgen, Nicholas Lubbers, Justin S. Smith, Roman Zubatyuk, Guoqing Zhou, Christopher Koh, Kipton Barros, Olexandr Isayev, Sergei Tretiak
The Journal of Chemical Physics, 2021, 154 (24), 244108.
DOI: 10.1063/5.0052857

Performance and Cost Assessment of Machine Learning Interatomic Potentials

Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Joerg Behler, Gabor Csanyi, Alexander Shapeev, Aidan P. Thompson, Mitchell A. Wood, Shyue Ping Ong
Journal of Physical Chemistry A, 2020, 124 (4), 731–745.
DOI: 10.1021/acs.jpca.9b08723

Modified Embedded-Atom Method Potentials for the Plasticity and Fracture Behaviors of Unary Fcc Metals

ZH Aitken, V Sorkin, ZG Yu, S Chen, Z Wu, YW Zhang - Physical Review B, undefined 2021
APS.

Machine Learning and Computational Mathematics

E Weinan - arXiv preprint ArXiv:2009.14596, undefined 2020
arxiv.org, 1920.

Research on Microstructure and Physical Properties of Molten Carbonate Salt Based on Machine Learning

YANG Bo, L. U. Guimin
华东理工大学学报 (自然科学版), 2021, 1–11.

Machine Learning on Neutron and X-Ray Scattering and Spectroscopies

Zhantao Chen, Nina Andrejevic, Nathan C. Drucker, Thanh Nguyen, R. Patrick Xian, Tess Smidt, Yao Wang, Ralph Ernstorfer, D. Alan Tennant, Maria Chan, Mingda Li
Chemical Physics Reviews, 2021, 2 (3), 031301.
DOI: 10.1063/5.0049111

Deep Learning for Nonadiabatic Excited-State Dynamics

Wen-Kai Chen, Xiang-Yang Liu, Wei-Hai Fang, Pavlo O. Dral, Ganglong Cui
The journal of physical chemistry letters, 2018, 9 (23), 6702–6708.
DOI: 10.1021/acs.jpclett.8b03026

Building Machine Learning Force Fields of Proteins with Fragment-Based Approach and Transfer Learning

Zheng Cheng, Jiahui Du, Lei Zhang, Jing Ma, Wei Li, Shuhua Li
2021.

The Study of the Optical Phonon Frequency of 3C-SiC by Molecular Dynamics Simulations with Deep Neural Network Potential

Wei Chen, Liang-Sheng Li
Journal of Applied Physics, 2021, 129 (24), 244104.
DOI: 10.1063/5.0049464

On the Role of Gradients for Machine Learning of Molecular Energies and Forces

Anders S. Christensen, O. Anatole von Lilienfeld
Machine Learning: Science and Technology, 2020, 1 (4), 045018.
DOI: 10.1088/2632-2153/abba6f

Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: Ab Initio Nonadiabatic Molecular Dynamics with Machine Learning

Weibin Chu, Wissam A. Saidi, Oleg V. Prezhdo
ACS nano, 2020, 14 (8), 10608–10615.
DOI: 10.1021/acsnano.0c04736

Implementing a Neural Network Interatomic Model with Performance Portability for Emerging Exascale Architectures

Saaketh Desai, Samuel Temple Reeve, James F. Belak
2020.

Nonadiabatic Excited-State Dynamics with Machine Learning

Pavlo O. Dral, Mario Barbatti, Walter Thiel
The journal of physical chemistry letters, 2018, 9 (19), 5660–5663.
DOI: 10.1021/acs.jpclett.8b02469

Machine Learning and Computational Mathematics

Weinan E
2020.

Deterministic and Statistical Approaches to Quantum Chemistry

Alberto Fabrizio
2020.

The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety

Donal P. Finegan, Juner Zhu, Xuning Feng, Matt Keyser, Marcus Ulmefors, Wei Li, Martin Z. Bazant, Samuel J. Cooper
Joule, 2020.

Heat and Charge Transport in H 2 O at Ice-Giant Conditions from Ab Initio Molecular Dynamics Simulations

Federico Grasselli, Lars Stixrude, Stefano Baroni
Nature communications, 2020, 11 (1), 1–7.
DOI: 10.1038/s41467-020-17275-5

Transferable Machine-Learning Model of the Electron Density

Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, David M. Wilkins, Clemence Corminboeuf, Michele Ceriotti
ACS central science, 2018, 5 (1), 57–64.
DOI: 10.1021/acscentsci.8b00551

Accuracy, Transferability, and Efficiency of Coarse-Grained Models of Molecular Liquids

M. G. Guenza, M. Dinpajooh, J. McCarty, I. Y. Lyubimov
The Journal of Physical Chemistry B, 2018, 122 (45), 10257–10278.
DOI: 10.1021/acs.jpcb.8b06687

High-Throughput Production of Force-Fields for Solid-State Electrolyte Materials

Ryo Kobayashi, Yasuhiro Miyaji, Koki Nakano, Masanobu Nakayama
APL Materials, 2020, 8 (8), 081111.
DOI: 10.1063/5.0015373

Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based \$ Ab \$\$ Initio \$ Molecular Dynamics II: Extensions to the Isobaric-Isoenthalpic and Isobaric-Isothermal Ensembles

Hsin-Yu Ko, Biswajit Santra, Robert A. DiStasio Jr
2020.

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine‐Learning‐Based Deep Potential

W Liang, G Lu, J Yu
Wiley Online Library, 2020.

A Deep Neural Network Interatomic Potential for Studying Thermal Conductivity of β-Ga2O3

Ruiyang Li, Zeyu Liu, Andrew Rohskopf, Kiarash Gordiz, Asegun Henry, Eungkyu Lee, Tengfei Luo
Applied Physics Letters, 2020, 117 (15), 152102.
DOI: 10.1063/5.0025051

Effects of Density and Composition on the Properties of Amorphous Alumina: A High-Dimensional Neural Network Potential Study

Wenwen Li, Yasunobu Ando, Satoshi Watanabe
The Journal of Chemical Physics, 2020, 153 (16), 164119.
DOI: 10.1063/5.0026289

Automatically Growing Global Reactive Neural Network Potential Energy Surfaces: A Trajectory-Free Active Learning Strategy

Qidong Lin, Yaolong Zhang, Bin Zhao, Bin Jiang
2020, 152 (15).
DOI: 10.1063/5.0004944

Active Learning for Robust, High-Complexity Reactive Atomistic Simulations

Rebecca K. RK Lindsey, LE Laurence E. Fried, N Goldman - The Journal of Chemical …, undefined 2020, Nir Goldman, Sorin Bastea
2020, 153 (13).
DOI: 10.1063/5.0021965

Future Directions of Chemical Theory and Computation

Yuyuan Lu, Geng Deng, Zhigang Shuai
Pure and Applied Chemistry, 2021.
DOI: 10.1515/pac-2020-1006

A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions

Yulong Lu, Jianfeng Lu
2020.

Understanding Simple Liquids through Statistical and Deep Learning Approaches

A. Moradzadeh, N. R. Aluru
The Journal of Chemical Physics, 2021, 154 (20), 204503.
DOI: 10.1063/5.0046226

Atomistic Structure Learning Algorithm with Surrogate Energy Model Relaxation

HL Henrik Lund Mortensen, Søren Ager SA Meldgaard, Malthe Kjær Bisbo, Mads Peter V. Christiansen, Bjørk Hammer, MK Bisbo - Physical Review B, undefined 2020
2020, 102 (7).
DOI: 10.1103/physrevb.102.075427

Machine Learning in Nano-Scale Biomedical Engineering

BPN Behler-Parrinello Network
.

Ring Polymer Molecular Dynamics and Active Learning of Moment Tensor Potential for Gas-Phase Barrierless Reactions: Application to S + H2

IS Ivan S. Novikov, Alexander V. Shapeev, Yury V. Suleimanov, AV Shapeev - The Journal of chemical …, undefined 2019
2019, 151 (22).
DOI: 10.1063/1.5127561

Automated Calculation of Thermal Rate Coefficients Using Ring Polymer Molecular Dynamics and Machine-Learning Interatomic Potentials with Active Learning

Ivan S. Novikov, Yury V. Suleimanov, Alexander V. Shapeev
Physical Chemistry Chemical Physics, 2018, 20 (46), 29503–29512.
DOI: 10.1039/C8CP06037A

Modeling H 2 O/Rutile-TiO 2 (110) Potential Energy Surfaces with Deep Networks

Stefan Oehmcke, Thomas Teusch, Thorben Petersen, Thorsten Klüner, Oliver Kramer
2020 International Joint Conference on Neural Networks (IJCNN), 2020, 1–7.
DOI: 10.1109/IJCNN48605.2020.9207275

Deep Learning Interatomic Potential for Simulation of Radiation Damage in Vanadium-Rich V-Cr-Ti Ternary Alloys

H. S. M. Phuong, M. D. Starostenkov, N. T. H. Trung
Эволюция Дефектных Структур в Конденсированных Средах, 2020, 141–142.

Development of a General-Purpose Machine-Learning Interatomic Potential for Aluminum by the Physically Informed Neural Network Method

GPP P.Purja Pun, V. Yamakov, J. Hickman, E. H. Glaessgen, Y. Mishin, EH Glaessgen - Physical Review …, undefined 2020
2020, 4 (11).
DOI: 10.1103/physrevmaterials.4.113807

Four Generations of High-Dimensional Neural Network Potentials

J Behler - Chemical Reviews, undefined 2021
ACS Publications.

Representing Local Atomic Environment Using Descriptors Based on Local Correlations

Amit Samanta
The Journal of chemical physics, 2018, 149 (24), 244102.
DOI: 10.1063/1.5055772

Unsupervised Learning of Atomic Environments from Simple Features

WF Reinhart - Computational Materials Science, undefined 2021
Elsevier.

A Systematic Approach to Generating Accurate Neural Network Potentials: The Case of Carbon

Y Shaidu, E Küçükbenli, R Lot, F Pellegrini
nature.com.

Elinvar Effect in β-Ti Simulated by on-the-Fly Trained Moment Tensor Potential

AV Shapeev, EV Podryabinkin, K Gubaev
iopscience.iop.org.

Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials

Andreas Singraber, Jörg Behler, Christoph Dellago
Journal of chemical theory and computation, 2019, 15 (3), 1827–1840.
DOI: 10.1021/acs.jctc.8b00770

Machine-Learned Interatomic Potentials by Active Learning: Amorphous and Liquid Hafnium Dioxide

G Sivaraman, AN Krishnamoorthy, M Baur - npj Computational …, undefined 2020
nature.com.

Automated Discovery of a Robust Interatomic Potential for Aluminum

JS Smith, B Nebgen, N Mathew, J Chen
nature.com.

Efficient Estimation of Material Property Curves and Surfaces via Active Learning

Yuan Tian, Dezhen Xue, Ruihao Yuan, Yumei Zhou, Xiangdong Ding, Jun Sun, Turab Lookman, J Sun - Physical Review …, undefined 2021
2021, 5 (1).
DOI: 10.1103/physrevmaterials.5.013802

Generalizable Protein Interface Prediction with End-to-End Learning

R. J. Townshend, Rishi Bedi, Ron O. Dror
2018.

Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks

Masashi Tsubaki, Teruyasu Mizoguchi
The journal of physical chemistry letters, 2018, 9 (19), 5733–5741.
DOI: 10.1021/acs.jpclett.8b01837

Towards Modeling Spatiotemporal Processes in Metal–Organic Frameworks

Veronique Van Speybroeck, Sander Vandenhaute, Alexander EJ Hoffman, Sven MJ Rogge
Trends in Chemistry, 2021.
DOI: 10.1016/j.trechm.2021.04.003

Uncertainty Quantification in Molecular Simulations with Dropout Neural Network Potentials

M Wen, EB Tadmor
nature.com, 2020.

Deep Learning for UV Absorption Spectra with SchNarc: First Steps toward Transferability in Chemical Compound Space

Julia Westermayr, Philipp Marquetand
The Journal of Chemical Physics, 2020, 153 (15), 154112.
DOI: 10.1063/5.0021915

Machine Learning for Nonadiabatic Molecular Dynamics

Julia Westermayr, Philipp Marquetand
Machine Learning in Chemistry, 2020, 17, 76.
DOI: 10.1039/9781839160233-00076

A Data-Driven Construction of the Periodic Table of the Elements

Michael J. Willatt, Félix Musil, Michele Ceriotti
2018.

Theory and Practice of Atom-Density Representations for Machine Learning

Michael J. Willatt, Félix Musil, Michele Ceriotti
arXiv preprint, 2018.

Modeling and Predicting Responses of Magnetoelectric Materials

Ben Xu, Ce-Wen Nan
MRS Bulletin, 2018, 43 (11), 829–833.
DOI: 10.1557/mrs.2018.259

Theoretical Investigation of Halide Perovskites for Solar Cell and Optoelectronic Applications

Jingxiu Yang, Peng Zhang, Jianping Wang, Su Huai Wei
Chinese Physics B, 2020, 29 (10).
DOI: 10.1088/1674-1056/abb3f6

OnsagerNet: Learning Stable and Interpretable Dynamics Using a Generalized Onsager Principle

Haijun Yu, Xinyuan Tian, Q Li - arXiv preprint ArXiv:2009.02327, undefined 2020, Weinan E, Qianxiao Li
arxiv.org, 2020.

Exploration of Transferable and Uniformly Accurate Neural Network Interatomic Potentials Using Optimal Experimental Design

V Zaverkin, J Kästner
iopscience.iop.org, 2021.

Discovery and Design of Soft Polymeric Bio-Inspired Materials with Multiscale Simulations and Artificial Intelligence

Chenxi Zhai, Tianjiao Li, Haoyuan Shi, Jingjie Yeo
Journal of Materials Chemistry B, 2020, 8 (31), 6562–6587.
DOI: 10.1039/D0TB00896F

Inferring Micro-Bubble Dynamics with Physics-Informed Deep Learning

Hanfeng Zhai, Guohui Hu
2021.

Arrested Phase Separation in Double-Exchange Models: Machine-Learning Enabled Large-Scale Simulation

Puhan Zhang, Gia-Wei Chern
2021.

Physically Inspired Atom-Centered Symmetry Functions for the Construction of High Dimensional Neural Network Potential Energy Surfaces

Kangyu Zhang, Lichang Yin, Gang Liu
Computational Materials Science, 2021, 186, 110071.
DOI: 10.1016/j.commatsci.2020.110071

Adaptive Genetic Algorithm for Structure Prediction and Application to Magnetic Materials

Xin Zhao, Shunqing Wu, Manh Cuong Nguyen, Kai-Ming Ho, Cai-Zhuang Wang
Handbook of Materials Modeling: Applications: Current and Emerging Materials, 2020, 2757–2776.
DOI: 10.1007/978-3-319-44680-6_73

0%
\ No newline at end of file +Others | DeepModeling

DeepModeling

Define the future of scientific computing together

Others

Efficiently Trained Deep Learning Potential for Graphane

Siddarth K. Achar, Linfeng Zhang, J. Karl Johnson
The Journal of Physical Chemistry C, 2021, 125 (27), 14874–14882.
DOI: 10/gmfwwb

Cormorant: Covariant Molecular Neural Networks

Brandon Anderson, Truong-Son Hy, Risi Kondor
Advances in Neural Information Processing Systems 32 (Nips 2019), 2019, 32.

Optimization and Validation of a Deep Learning CuZr Atomistic Potential: Robust Applications for Crystalline and Amorphous Phases with near-DFT Accuracy

Christopher M. Andolina, Philip Williamson, Wissam A. Saidi
Journal of Chemical Physics, 2020, 152 (15).
DOI: 10.1063/5.0005347

Robust, Multi-Length-Scale, Machine Learning Potential for Ag–Au Bimetallic Alloys from Clusters to Bulk Materials

Christopher M. Andolina, Marta Bon, Daniele Passerone, Wissam A. Saidi
The Journal of Physical Chemistry C, 2021.
DOI: 10/gmdj4k

Free Energy of Proton Transfer at the Water-TiO2 Interface from Ab Initio Deep Potential Molecular Dynamics

Marcos F. Calegari Andrade, Hsin-Yu Ko, Linfeng Zhang, Roberto Car, Annabella Selloni
Chemical Science, 2020, 11 (9), 2335–2341.
DOI: 10.1039/c9sc05116c

Hydrogen Dynamics in Supercritical Water Probed by Neutron Scattering and Computer Simulations

Carla Andreani, Giovanni Romanelli, Alexandra Parmentier, Roberto Senesi, Alexander Kolesnikov, Hsin-Yu Ko, Marcos F. Calegari Andrade, Roberto Car
Journal of Physical Chemistry Letters, 2020, 11 (21), 9461–9467.
DOI: 10.1021/acs.jpclett.0c02547

Active Learning Accelerates Ab Initio Molecular Dynamics on Pericyclic Reactive Energy Surfaces

Shi Jun Ang, Wujie Wang, Daniel Schwalbe-Koda, Simon Axelrod, Rafael Gomez-Bombarelli
2020.

Active Learning Accelerates Ab Initio Molecular Dynamics on Reactive Energy Surfaces

Shi Jun Ang, Wujie Wang, Daniel Schwalbe-Koda, Simon Axelrod, Rafael Gómez-Bombarelli
Chem, 2021, 7 (3), 738–751.
DOI: 10/gmgdj2

Embedding Quantum Statistical Excitations in a Classical Force Field

Susan R. Atlas
Journal of Physical Chemistry A, 2021, 125 (17), 3760–3775.
DOI: 10.1021/acs.jpca.1c00164

Deep Machine Learning Interatomic Potential for Liquid Silica

I. A. Balyakin, S. Rempel, R. E. Ryltsev, A. A. Rempel
Physical Review E, 2020, 102 (5), 052125.
DOI: 10.1103/PhysRevE.102.052125

Machine-Learning-Based Interatomic Potential for Phonon Transport in Perfect Crystalline Si and Crystalline Si with Vacancies

Hasan Banaei, Ruiqiang Guo, Amirreza Hashemi, Sangyeop Lee
Physical Review Materials, 2019, 3 (7), 074603.
DOI: 10.1103/PhysRevMaterials.3.074603

Structure Motif-Centric Learning Framework for Inorganic Crystalline Systems

Huta R. Banjade, Sandro Hauri, Shanshan Zhang, Francesco Ricci, Weiyi Gong, Geoffroy Hautier, Slobodan Vucetic, Qimin Yan
Science Advances, 2021, 7 (17), eabf1754.
DOI: 10.1126/sciadv.abf1754

Voxelized Atomic Structure Potentials: Predicting Atomic Forces with the Accuracy of Quantum Mechanics Using Convolutional Neural Networks

Matthew C. Barry, Kristopher E. Wise, Surya R. Kalidindi, Satish Kumar
Journal of Physical Chemistry Letters, 2020, 11 (21), 9093–9099.
DOI: 10.1021/acs.jpclett.0c02271

Machine Learning a General-Purpose Interatomic Potential for Silicon

Albert P. Bartók, James Kermode, Noam Bernstein, Gábor Csányi
Physical Review X, 2018, 8 (4), 041048.
DOI: 10.1103/PhysRevX.8.041048

Machine Learning for Multi-Fidelity Scale Bridging and Dynamical Simulations of Materials

R Batra, S Sankaranarayanan - Journal of Physics: Materials, undefined 2020
iopscience.iop.org, 2020, 3, 31002.
DOI: 10.1088/2515-7639/ab8c2d

SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, Boris Kozinsky
2021.

De Novo Exploration and Self-Guided Learning of Potential-Energy Surfaces

Noam Bernstein, Gabor Csanyi, Volker L. Deringer
Npj Computational Materials, 2019, 5, 99.
DOI: 10.1038/s41524-019-0236-6

A Perspective on Inverse Design of Battery Interphases Using Multi-Scale Modelling, Experiments and Generative Deep Learning

Arghya Bhowmik, Ivano E. Castelli, Juan Maria Garcia-Lastra, Peter Bjorn Jorgensen, Ole Winther, Tejs Vegge
Energy Storage Materials, 2019, 21, 446–456.
DOI: 10.1016/j.ensm.2019.06.011

Efficient Sampling of Equilibrium States Using Boltzmann Generators

Jeremy Binagia, Sean Friedowitz, Kevin J Hou
, 6.

Efficient Global Structure Optimization with a Machine-Learned Surrogate Model

Malthe K. Bisbo, Bjørk Hammer
Physical Review Letters, 2020, 124 (8).
DOI: 10.1103/physrevlett.124.086102

Efficient Prediction of 3D Electron Densities Using Machine Learning

Mihail Bogojeski, Felix Brockherde, Leslie Vogt-Maranto, Li Li, Mark E. Tuckerman, Kieron Burke, Klaus-Robert Müller
2018.

Quantum Chemical Accuracy from Density Functional Approximations via Machine Learning

Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman, Klaus-Robert Mueller, Kieron Burke
Nature Communications, 2020, 11 (1), 5223.
DOI: 10.1038/s41467-020-19093-1

Neural Networks-Based Variationally Enhanced Sampling

Luigi Bonati, Yue-Yu Zhang, Michele Parrinello
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (36), 17641–17647.
DOI: 10.1073/pnas.1907975116

Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics

Luigi Bonati, Michele Parrinello
Physical review letters, 2018, 121 (26), 265701.
DOI: 10.1103/PhysRevLett.121.265701

Machine Learning in Nano-Scale Biomedical Engineering

Alexandros-Apostolos A. Boulogeorgos, Stylianos E. Trevlakis, Sotiris A. Tegos, Vasilis K. Papanikolaou, George K. Karagiannidis
2020.

Transforming Solid-State Precipitates via Excess Vacancies

Laure Bourgeois, Yong Zhang, Zezhong Zhang, Yiqiang Chen, Nikhil Medhekar
Nature Communications, 2020, 11 (1), 1248.
DOI: 10.1038/s41467-020-15087-1

MB-Fit: Software Infrastructure for Data-Driven Many-Body Potential Energy Functions

Ethan Bull-Vulpe, Marc Riera, Andreas Goetz, Francesco Paesani
2021.

Deep-Learning Approach to First-Principles Transport Simulations

Marius Burkle, Umesha Perera, Florian Gimbert, Hisao Nakamura, Masaaki Kawata, Yoshihiro Asai
Physical Review Letters, 2021, 126 (17), 177701.
DOI: 10.1103/PhysRevLett.126.177701

Gaussian Approximation Potentials for Body-Centered-Cubic Transition Metals

J. Byggmastar, K. Nordlund, F. Djurabekova
Physical Review Materials, 2020, 4 (9), 093802.
DOI: 10.1103/PhysRevMaterials.4.093802

Machine-Learning Interatomic Potential for Radiation Damage and Defects in Tungsten

J. Byggmastar, A. Hamedani, K. Nordlund, F. Djurabekova
Physical Review B, 2019, 100 (14), 144105.
DOI: 10.1103/PhysRevB.100.144105

Structure of Disordered \${\textbackslash mathrm{\vphantom}}TiO\vphantom{}\vphantom{}_{2}\$ Phases from Ab Initio Based Deep Neural Network Simulations

Marcos F. Calegari Andrade, Annabella Selloni
Physical Review Materials, 2020, 4 (11), 113803.
DOI: 10/ghnhd5

Machine-Learning X-Ray Absorption Spectra to Quantitative Accuracy

Matthew R. Carbone, Mehmet Topsakal, Deyu Lu, Shinjae Yoo
Physical Review Letters, 2020, 124 (15), 156401.
DOI: 10.1103/PhysRevLett.124.156401

Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory

Bilal Chehaibou, Michael Badawi, Tomas Bucko, Timur Bazhirov, Dario Rocca
Journal of Chemical Theory and Computation, 2019, 15 (11), 6333–6342.
DOI: 10.1021/acs.jctc.9b00782

Topics in the Mathematical Design of Materials

X Chen, I Fonseca, M Ravnik, V Slastikov, C Zannoni
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2021, 379 (2201), 20200108.
DOI: 10.1098/rsta.2020.0108

Direct Prediction of Phonon Density of States with Euclidean Neural Networks

Z Chen, N Andrejevic, T Smidt, Z Ding, Q Xu - Advanced …, undefined 2021
Wiley Online Library, 2021, 8.
DOI: 10.1002/advs.202004214

Atomic Energies from a Convolutional Neural Network

Xin Chen, Mathias S. Jorgensen, Jun Li, Bjork Hammer
Journal of Chemical Theory and Computation, 2018, 14 (7), 3933–3942.
DOI: 10.1021/acs.jctc.8b00149

Competitive Effect of Disorder and Defects on Dynamic Structural Transformation of Compressed Gold

B Chen, Q Zeng, H Wang, D Kang, J Dai
arxiv.org, 2021.
DOI: arXiv:2006.13136

A Critical Review of Machine Learning of Energy Materials

Chi Chen, Yunxing Zuo, Weike Ye, Xiangguo Li, Zhi Deng, Shyue Ping Ong
Advanced Energy Materials, 2020, 10 (8), 1903242.
DOI: 10.1002/aenm.201903242

Machine Learning on Neutron and X-Ray Scattering

Z Chen, N Andrejevic, N Drucker, T Nguyen
arxiv.org.

DeePKS: A Comprehensive Data-Driven Approach toward Chemically Accurate Density Functional Theory

Yixiao Chen, Linfeng Zhang, Han Wang, E. Weinan
Journal of Chemical Theory and Computation, 2021, 17 (1), 170–181.
DOI: 10.1021/acs.jctc.0c00872

DeePKS-Kit: A Package for Developing Machine Learning-Based Chemically Accurate Energy and Density Functional Models

Y Chen, L Zhang, H Wang
arxiv.org, 2021.

Efficient Construction of Excited-State Hessian Matrices with Machine Learning Accelerated Multilayer Energy-Based Fragment Method

Wen-Kai Chen, Yaolong Zhang, Bin Jiang, Wei-Hai Fang, Ganglong Cui
Journal of Physical Chemistry A, 2020, 124 (27), 5684–5695.
DOI: 10.1021/acs.jpca.0c04117

Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments

Michael S. Chen, Tim J. Zuehlsdorff, Tobias Morawietz, Christine M. Isborn, Thomas E. Markland
Journal of Physical Chemistry Letters, 2020, 11 (18), 7559–7568.
DOI: 10.1021/acs.jpclett.0c02168

Co-Segregation of Mg and Zn Atoms at the Planar Η1-Precipitate/Al Matrix Interface in an Aged Al–Zn–Mg Alloy

Bingqing Cheng, Xiaojun Zhao, Yong Zhang, Houwen Chen, Ian Polmear, Jian-Feng Nie
Scripta Materialia, 2020, 185, 51–55.
DOI: 10/gmgc5h

Deep-Learning Potential Method to Simulate Shear Viscosity of Liquid Aluminum at High Temperature and High Pressure by Molecular Dynamics

Yuqing Cheng, Han Wang, Shuaichuang Wang, Xingyu Gao, Qiong Li, Jun Fang, Hongzhou Song, Weidong Chu, Gongmu Zhang, Haifeng Song, Haifeng Liu
Aip Advances, 2021, 11 (1), 015043.
DOI: 10.1063/5.0036298

Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning

Dingming Chen, Zhuangzhuang Lai, Jiawei Zhang, Jianfu Chen, Peijun Hu, Haifeng Wang
Chinese Journal of Chemistry, 2021, n/a (n/a).
DOI: 10/gmfw5g

Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning

Lixue Cheng, Nikola B. Kovachki, Matthew Welborn, Thomas F. Miller
Journal of Chemical Theory and Computation, 2019, 15 (12), 6668–6677.
DOI: 10.1021/acs.jctc.9b00884

Ground State Energy Functional with Hartree-Fock Efficiency and Chemical Accuracy

Yixiao Chen, Linfeng Zhang, Han Wang, E. Weinan
Journal of Physical Chemistry A, 2020, 124 (35), 7155–7165.
DOI: 10.1021/acs.jpca.0c03886

A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules

Lixue Cheng, Matthew Welborn, Anders S. Christensen, Thomas F. Miller
Journal of Chemical Physics, 2019, 150 (13), 131103.
DOI: 10.1063/1.5088393

Integrating Machine Learning with the Multilayer Energy-Based Fragment Method for Excited States of Large Systems

Wen-Kai Chen, Wei-Hai Fang, Ganglong Cui
Journal of Physical Chemistry Letters, 2019, 10 (24), 7836–7841.
DOI: 10.1021/acs.jpclett.9b03113

On the Representation of Solutions to Elliptic PDEs in Barron Spaces

Ziang Chen, Jianfeng Lu, Yulong Lu
2021.

TensorAlloy: An Automatic Atomistic Neural Network Program for Alloys

Xin Chen, Xing-Yu Gao, Ya-Fan Zhao, De-Ye Lin, Wei-Dong Chu, Hai-Feng Song
Computer Physics Communications, 2020, 250, 107057.
DOI: 10.1016/j.cpc.2019.107057

Unsupervised Machine Learning Methods for Polymer Nanocomposites Data via Molecular Dynamics Simulation

Zhudan Chen, Dazi Li, Haixiao Wan, Minghui Liu, Jun Liu
Molecular Simulation, 2020.
DOI: 10.1080/08927022.2020.1851028

Constructing Convex Energy Landscapes for Atomistic Structure Optimization

Siva Chiriki, Mads-Peter Christiansen, B. Hammer
Physical Review B, 2019, 100 (23), 235436.
DOI: 10.1103/PhysRevB.100.235436

Accurate Molecular Dynamics Enabled by Efficient Physically-Constrained Machine Learning Approaches

Stefan Chmiela, Huziel E. Sauceda, Alexandre Tkatchenko, Klaus-Robert Müller
2020, 968, 129–154.
DOI: 10/gmgfsq

Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields

Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Mueller, Alexandre Tkatchenko
Nature Communications, 2018, 9, 3887.
DOI: 10.1038/s41467-018-06169-2

sGDML: Constructing Accurate and Data Efficient Molecular Force Fields Using Machine Learning

Stefan Chmiela, Huziel E. Sauceda, Igor Poltavsky, Klaus-Robert Mueller, Alexandre Tkatchenko
Computer Physics Communications, 2019, 240, 38–45.
DOI: 10.1016/j.cpc.2019.02.007

Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator

Young-Jae Choi, Seung-Hoon Jhi
The Journal of Physical Chemistry B, 2020, 124 (39), 8704–8710.
DOI: 10/gmf6kr

FCHL Revisited: Faster and More Accurate Quantum Machine Learning

Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, O. Anatole von Lilienfeld
Journal of Chemical Physics, 2020, 152 (4), 044107.
DOI: 10.1063/1.5126701

Gaussian Representation for Image Recognition and Reinforcement Learning of Atomistic Structure

Mads Peter V. Christiansen, Henrik Lund Mortensen, Søren Ager Meldgaard, Bjørk Hammer
Journal of Chemical Physics, 2020, 153 (4).
DOI: 10.1063/5.0015571

Autonomous Discovery in the Chemical Sciences Part I: Progress

Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie-International Edition, 2020, 59 (51), 22858–22893.
DOI: 10.1002/anie.201909987

Dielectric Response with Short-Ranged Electrostatics

Stephen J. Cox
Proceedings of the National Academy of Sciences, 2020, 117 (33), 19746–19752.
DOI: 10/ghc8bb

Highly Accurate Many-Body Potentials for Simulations of N2O5 in Water: Benchmarks, Development, and Validation

Vinicius Wilian D. Cruzeiro, Eleftherios Lambros, Marc Riera, Ronak Roy, Francesco Paesani, Andreas W. Gotz
Journal of Chemical Theory and Computation, 2021, 17 (7), 3931–3945.
DOI: 10.1021/acs.jctc.1c00069

Analytical Model of Electron Density and Its Machine Learning Inference

Bruno Cuevas-Zuviria, Luis F. Pacios
Journal of Chemical Information and Modeling, 2020, 60 (8), 3831–3842.
DOI: 10.1021/acs.jcim.0c00197

Large Deviations for the Perceptron Model and Consequences for Active Learning

H Cui, L Saglietti, L Zdeborová - Mathematical and Scientific, undefined 2020
proceedings.mlr.press, 2020, 107, 390–430.

Biomolecular QM/MM Simulations: What Are Some of the "Burning Issues"?

Qiang Cui, Tanmoy Pal, Luke Xie
Journal of Physical Chemistry B, 2021, 125 (3), 689–702.
DOI: 10.1021/acs.jpcb.0c09898

Grain Boundary Strengthening in ZrB2 by Segregation of W: Atomistic Simulations with Deep Learning Potential

Fu-Zhi Dai, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of the European Ceramic Society, 2020, 40 (15), 5029–5036.
DOI: 10.1016/j.jeurceramsoc.2020.06.007

Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B-2: Molecular Dynamics Simulation by Deep Learning Potential

Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou
Journal of Materials Science \& Technology, 2021, 72, 8–15.
DOI: 10.1016/j.jmst.2020.07.014

Theoretical Prediction on Thermal and Mechanical Properties of High Entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by Deep Learning Potential

Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou
Journal of Materials Science \& Technology, 2020, 43, 168–174.
DOI: 10.1016/j.jmst.2020.01.005

Relationship of Structure and Mechanical Property of Silica with Enhanced Sampling and Machine Learning

Yuanpeng Deng, Tao Du, Hui Li
Journal of the American Ceramic Society, 2021, 104 (8), 3910–3920.
DOI: 10/gmfw49

A General-Purpose Machine-Learning Force Field for Bulk and Nanostructured Phosphorus

Volker L. Deringer, Miguel A. Caro, Gabor Csanyi
Nature Communications, 2020, 11 (1), 5461.
DOI: 10.1038/s41467-020-19168-z

Modelling and Understanding Battery Materials with Machine-Learning-Driven Atomistic Simulations

Volker L. Deringer
Journal of Physics-Energy, 2020, 2 (4), 041003.
DOI: 10.1088/2515-7655/abb011

Learning from the Density to Correct Total Energy and Forces in First Principle Simulations

Sebastian Dick, Marivi Fernandez-Serra
The Journal of Chemical Physics, 2019, 151 (14), 144102.
DOI: 10/gmgftv

Hierarchical Machine Learning of Potential Energy Surfaces

Pavlo O. Dral, Alec Owens, Alexey Dral, Gabor Csanyi
Journal of Chemical Physics, 2020, 152 (20).
DOI: 10.1063/5.0006498

MLatom 2: An Integrative Platform for Atomistic Machine Learning

Pavlo O. Dral, Fuchun Ge, Bao-Xin Xue, Yi-Fan Hou, Max Pinheiro, Jianxing Huang, Mario Barbatti
Topics in Current Chemistry, 2021, 379 (4), 27.
DOI: 10.1007/s41061-021-00339-5

Quantum Chemistry in the Age of Machine Learning

Pavlo O. Dral
Journal of Physical Chemistry Letters, 2020, 11 (6), 2336–2347.
DOI: 10.1021/acs.jpclett.9b03664

Toward Efficient Generation, Correction, and Properties Control of Unique Drug-like Structures

Maksym Druchok, Dzvenymyra Yarish, Oleksandr Gurbych, Mykola Maksymenko
Journal of Computational Chemistry, 2021, 42 (11), 746–760.
DOI: 10.1002/jcc.26494

Dynamics \& Spectroscopy with Neutrons-Recent Developments \& Emerging Opportunities

Kacper Druzbicki, Mattia Gaboardi, Felix Fernandez-Alonso
Polymers, 2021, 13 (9), 1440.
DOI: 10.3390/polym13091440

Data-Driven Approaches Can Overcome the Cost-Accuracy Trade-Off in Multireference Diagnostics

Chenru Duan, Fang Liu, Aditya Nandy, Heather J. Kulik
Journal of Chemical Theory and Computation, 2020, 16 (7), 4373–4387.
DOI: 10.1021/acs.jctc.0c00358

Learning from Failure: Predicting Electronic Structure Calculation Outcomes with Machine Learning Models

Chenru Duan, Jon Paul Janet, Fang Liu, Aditya Nandy, Heather J. Kulik
Journal of Chemical Theory and Computation, 2019, 15 (4), 2331–2345.
DOI: 10.1021/acs.jctc.9b00057

Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials

D Dubbeldam, KS Walton, TJH Vlugt - Advanced Theory and …, undefined 2019
Wiley Online Library, 2019, 2 (11).
DOI: 10.1002/adts.201900135

Atomic Cluster Expansion: Completeness, Efficiency and Stability

Genevieve Dusson, Markus Bachmayr, Gabor Csanyi, Ralf Drautz, Simon Etter, Cas van der Oord, Christoph Ortner
2021.

Algorithms for Solving High Dimensional PDEs: From Nonlinear Monte Carlo to Machine Learning

Weinan E, Jiequn Han, Arnulf Jentzen, A Jentzen - arXiv preprint ArXiv:2008.13333, undefined 2020
arxiv.org, 2020.

Accelerating Finite-Temperature Kohn-Sham Density Functional Theory with Deep Neural Networks

J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi, S. Rajamanickam
Physical Review B, 2021, 104 (3), 035120.
DOI: 10.1103/PhysRevB.104.035120

Neuroevolution Machine Learning Potentials: Combining High Accuracy and Low Cost in Atomistic Simulations and Application to Heat Transport

Zheyong Fan, Zezhu Zeng, Cunzhi Zhang, Yanzhou Wang, Haikuan Dong, Yue Chen, Tapio Ala-Nissila
2021.

A Mathematical Principle of Deep Learning: Learn the Geodesic Curve in the Wasserstein Space

Kuo Gai, Shihua Zhang
2021.

Reactive Uptake of N2O5 by Atmospheric Aerosol Is Dominated by Interfacial Processes

M Galib, DT Limmer
science.sciencemag.org, 2021.

Deep Learning in Protein Structural Modeling and Design

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, Jeffrey J. Gray
Patterns, 2020, 1 (9), 100142.
DOI: 10.1016/j.patter.2020.100142

Short Solvent Model for Ion Correlations and Hydrophobic Association

Ang Gao, Richard C. Remsing, John D. Weeks
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (3), 1293–1302.
DOI: 10.1073/pnas.1918981117

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials

Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin S. Smith, Adrian E. Roitberg
Journal of Chemical Information and Modeling, 2020, 60 (7), 3408–3415.
DOI: 10.1021/acs.jcim.0c00451

Signatures of a Liquid-Liquid Transition in an Ab Initio Deep Neural Network Model for Water

Thomas E. Gartner, Linfeng Zhang, Pablo M. Piaggi, Roberto Car, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (42), 26040–26046.
DOI: 10.1073/pnas.2015440117

Combining Phonon Accuracy with High Transferability in Gaussian Approximation Potential Models

Janine George, Geoffroy Hautier, Albert P. Bartok, Gabor Csanyi, Volker L. Deringer
Journal of Chemical Physics, 2020, 153 (4), 044104.
DOI: 10.1063/5.0013826

The Role of Feature Space in Atomistic Learning

Alexander Goscinski, Guillaume Fraux, Giulio Imbalzano, Michele Ceriotti
Machine Learning-Science and Technology, 2021, 2 (2), 025028.
DOI: 10.1088/2632-2153/abdaf7

Code Interoperability Extends the Scope of Quantum Simulations

Marco Govoni, Jonathan Whitmer, Juan de Pablo, Francois Gygi, Giulia Galli
Npj Computational Materials, 2021, 7 (1), 32.
DOI: 10.1038/s41524-021-00501-z

Incorporating Long-Range Physics in Atomic-Scale Machine Learning

Andrea Grisafi, Michele Ceriotti
Journal of Chemical Physics, 2019, 151 (20), 204105.
DOI: 10.1063/1.5128375

Multi-Scale Approach for the Prediction of Atomic Scale Properties

Andrea Grisafi, Jigyasa Nigam, Michele Ceriotti
Chemical Science, 2021, 12 (6), 2078–2090.
DOI: 10.1039/d0sc04934d

Deep Neural Network Model for Approximating Eigenmodes Localized by a Confining Potential

L Grubišić, M Hajba, D Lacmanović - Entropy
mdpi.com, 2021, 2, 27001.
DOI: 10.1088/2632-2153/abc940

Finite-Temperature Interplay of Structural Stability, Chemical Complexity, and Elastic Properties of Bcc Multicomponent Alloys from Ab Initio Trained Machine-Learning Potentials

Konstantin Gubaev, Yuji Ikeda, Ferenc Tasnadi, Joerg Neugebauer, Alexander Shapeev, Blazej Grabowski, Fritz Koermann
Physical Review Materials, 2021, 5 (7), 073801.
DOI: 10.1103/PhysRevMaterials.5.073801

Enumeration of de Novo Inorganic Complexes for Chemical Discovery and Machine Learning

Stefan Gugler, Jon Paul Janet, Heather J. Kulik
Molecular Systems Design \& Engineering, 2020, 5 (1), 139–152.
DOI: 10.1039/c9me00069k

High-Repetition-Rate Femtosecond Mid-Infrared Pulses Generated by Nonlinear Optical Modulation of Continuous-Wave QCLs and ICLs

Chenglin Gu, Zhong Zuo, Daping Luo, Daowang Peng, Yuanfeng Di, Xing Zou, Liu Yang, Wenxue Li
Optics Letters, 2019, 44 (23), 5848–5851.
DOI: 10.1364/OL.44.005848

Neural Network Representation of Electronic Structure from Ab Initio Molecular Dynamics

Q Gu, L Zhang, J Feng
arxiv.org, 2021.

Bergman-Type Medium Range Order in Amorphous Zr77Rh23 Alloy Studied by Ab Initio Molecular Dynamics Simulations

Y. R. Guo, Chong Qiao, J. J. Wang, H. Shen, S. Y. Wang, Y. X. Zheng, R. J. Zhang, L. Y. Chen, Wan-Sheng Su, C. Z. Wang, K. M. Ho
Journal of Alloys and Compounds, 2019, 790, 675–682.
DOI: 10.1016/j.jallcom.2019.03.197

The Thermoelectric Performance of New Structure SnSe Studied by Quotient Graph and Deep Learning Potential

D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, X. Chang
Materials Today Energy, 2021, 20, 100665.
DOI: 10/gmgd38

Sparse Gaussian Process Potentials: Application to Lithium Diffusivity in Superionic Conducting Solid Electrolytes

Amir Hajibabaei, Chang Woo Myung, Kwang S. Kim
Physical Review B, 2021, 103 (21), 214102.
DOI: 10.1103/PhysRevB.103.214102

MAISE: Construction of Neural Network Interatomic Models and Evolutionary Structure Optimization

S Hajinazar, A Thorn, ED Sandoval
Elsevier, 2020.

Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach

Jong-Kwon Ha, Kicheol Kim, Seung Kyu Min
Journal of Chemical Theory and Computation, 2021, 17 (2), 694–702.
DOI: 10.1021/acs.jctc.0c01261

Dynamic Observation of Dendritic Quasicrystal Growth upon Laser-Induced Solid-State Transformation

Insung Han, Joseph T. McKeown, Ling Tang, Cai-Zhuang Wang, Hadi Parsamehr, Zhucong Xi, Ying-Rui Lu, Matthew J. Kramer, Ashwin J. Shahani
Physical Review Letters, 2020, 125 (19), 195503.
DOI: 10.1103/PhysRevLett.125.195503

A Machine Learning Approach for MP2 Correlation Energies and Its Application to Organic Compounds

Ruocheng Han, Mauricio Rodriguez-Mayorga, Sandra Luber
Journal of Chemical Theory and Computation, 2021, 17 (2), 777–790.
DOI: 10.1021/acs.jctc.0c00898

Solving Many-Electron Schrodinger Equation Using Deep Neural Networks

Jiequn Han, Linfeng Zhang, Weinan E
Journal of Computational Physics, 2019, 399, 108929.
DOI: 10.1016/j.jcp.2019.108929

Trajectory-Based Machine Learning Method and Its Application to Molecular Dynamics

R. Han, S. Luber
Molecular Physics, 2020, 118 (19-20).
DOI: 10.1080/00268976.2020.1788189

Uniformly Accurate Machine Learning-Based Hydrodynamic Models for Kinetic Equations

Jiequn Han, Chao Ma, Zheng Ma, Weinan E
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (44), 21983–21991.
DOI: 10.1073/pnas.1909854116

Uniformly Accurate Machine Learning-Based Hydrodynamic Models for Kinetic Equations

Jiequn Han, Chao Ma, Zheng Ma, Weinan E
Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (44), 21983–21991.
DOI: 10.1073/pnas.1909854116

Universal Approximation of Symmetric and Anti-Symmetric Functions

J Han, Y Li, L Lin, J Lu, J Zhang, L Zhang
arxiv.org, 2019.

Validating First-Principles Molecular Dynamics Calculations of Oxide/Water Interfaces with x-Ray Reflectivity Data

Katherine J. Harmon, Kendra Letchworth-Weaver, Alex P. Gaiduk, Federico Giberti, Francois Gygi, Maria K. Y. Chan, Paul Fenter, Giulia Galli
Physical Review Materials, 2020, 4 (11), 113805.
DOI: 10.1103/PhysRevMaterials.4.113805

An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models

Jason R. Hattrick-Simpers, Brian DeCost, A. Gilad Kusne, Howie Joress, Winnie Wong-Ng, Debra L. Kaiser, Andriy Zakutayev, Caleb Phillips, Shijing Sun, Janak Thapa, Heshan Yu, Ichiro Takeuchi, Tonio Buonassisi
Integrating Materials and Manufacturing Innovation, 2021, 10 (2), 311–318.
DOI: 10/gkhbw2

Fast, Accurate, and Transferable Many-Body Interatomic Potentials by Symbolic Regression

Alberto Hernandez, Adarsh Balasubramanian, Fenglin Yuan, Simon A. M. Mason, Tim Mueller
Npj Computational Materials, 2019, 5, 112.
DOI: 10.1038/s41524-019-0249-1

Compressing Physical Properties of Atomic Species for Improving Predictive Chemistry

John E. Herr, Kevin Koh, Kun Yao, John Parkhill
The Journal of Chemical Physics, 2019, 151 (8), 084103.
DOI: 10/ggb5bq

Compressing Physics with an Autoencoder: Creating an Atomic Species Representation to Improve Machine Learning Models in the Chemical Sciences

John E. Herr, Kevin Koh, Kun Yao, John Parkhill
Journal of Chemical Physics, 2019, 151 (8), 084103.
DOI: 10.1063/1.5108803

In Operando Active Learning of Interatomic Interaction during Large-Scale Simulations

M Hodapp, A Shapeev - Machine Learning: Science And, undefined 2020
iopscience.iop.org, 2020.
DOI: 10.1088/2632-2153/aba373

Machine-Learning Potentials Enable Predictive \$\textbackslash textit{and}\$ Tractable High-Throughput Screening of Random Alloys

Max Hodapp, Alexander Shapeev
2021.

Dielectric Constant of Supercritical Water in a Large Pressure-Temperature Range

Rui Hou, Yuhui Quan, Ding Pan
Journal of Chemical Physics, 2020, 153 (10), 101103.
DOI: 10.1063/5.0020811

Deep Potential Generation Scheme and Simulation Protocol for the Li10GeP2S12-Type Superionic Conductors

Jianxing Huang, Linfeng Zhang, Han Wang, Jinbao Zhao, Jun Cheng, E. Weinan
Journal of Chemical Physics, 2021, 154 (9), 094703.
DOI: 10.1063/5.0041849

Ab Initio Machine Learning in Chemical Compound Space

Bing Huang, O. Anatole von Lilienfeld
2021.

Int-Deep: A Deep Learning Initialized Iterative Method for Nonlinear Problems

Jianguo Huang, Haoqin Wang, Haizhao Yang
Journal of Computational Physics, 2020, 419, 109675.
DOI: 10/gg2rtj

Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows

Juntao Huang, Zhiting Ma, Yizhou Zhou, Wen An Yong
Journal of Non-Equilibrium Thermodynamics, 2021.
DOI: 10.1515/JNET-2021-0008/HTML

Machine Learning Moment Closure Models for the Radiative Transfer Equation I: Directly Learning a Gradient Based Closure

Juntao Huang, Yingda Cheng, Andrew J. Christlieb, Luke F. Roberts
2021.

Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation

Deping Hu, Yu Xie, Xusong Li, Lingyue Li, Zhenggang Lan
Journal of Physical Chemistry Letters, 2018, 9 (11), 2725–2732.
DOI: 10.1021/acs.jpclett.8b00684

Neural Network Force Fields for Metal Growth Based on Energy Decompositions

Qin Hu, Mouyi Weng, Xin Chen, Shucheng Li, Feng Pan, Lin-Wang Wang
Journal of Physical Chemistry Letters, 2020, 11 (4), 364–1369.
DOI: 10.1021/acs.jpclett.9b03780

Perspective on Multi-Scale Simulation of Thermal Transport in Solids and Interfaces

Ming Hu, Zhonghua Yang
Physical Chemistry Chemical Physics, 2021, 23 (3), 1785–1801.
DOI: 10.1039/d0cp03372c

Coarse Graining Molecular Dynamics with Graph Neural Networks

Brooke E. Husic, Nicholas E. Charron, Dominik Lemm, Jiang Wang, Adria Perez, Maciej Majewski, Andreas Kramer, Yaoyi Chen, Simon Olsson, Gianni de Fabritiis, Frank Noe, Cecilia Clementi
Journal of Chemical Physics, 2020, 153 (19), 194101.
DOI: 10.1063/5.0026133

Artificial Neutral Networks (ANNs) Applied as CFD Optimization Techniques

Ideen Sadrehaghighi
2021.
DOI: 10/gmf5vh

Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers

Nicholas E. Jackson, Alec S. Bowen, Juan J. de Pablo
Macromolecules, 2020, 53 (1), 482–490.
DOI: 10.1021/acs.macromol.9b02020

Electronic Structure at Coarse-Grained Resolutions from Supervised Machine Learning

Nicholas E. Jackson, Alec S. Bowen, Lucas W. Antony, Michael A. Webb, Venkatram Vishwanath, Juan J. de Pablo
Science Advances, 2019, 5 (3), eaav1190.
DOI: 10.1126/sciadv.aav1190

Recent Advances in Machine Learning towards Multiscale Soft Materials Design

Nicholas E. Jackson, Michael A. Webb, Juan J. de Pablo
Current Opinion in Chemical Engineering, 2019, 23, 106–114.
DOI: 10.1016/j.coche.2019.03.005

Machine Learning for Metallurgy III: A Neural Network Potential for Al-Mg-Si

Abhinav C.P. Jain, Daniel Marchand, Albert Glensk, M. Ceriotti, W. A. Curtin
Physical Review Materials, 2021, 5 (5).
DOI: 10.1103/physrevmaterials.5.053805

A Quantitative Uncertainty Metric Controls Error in Neural Network-Driven Chemical Discovery

Jon Paul Janet, Chenru Duan, Tzuhsiung Yang, Aditya Nandy, Heather J. Kulik
Chemical Science, 2019, 10 (34), 7913–7922.
DOI: 10.1039/c9sc02298h

Uncertain Times Call for Quantitative Uncertainty Metrics: Controlling Error in Neural Network Predictions for Chemical Discovery

Jon Paul Janet, Chenru Duan, Tzuhsiung Yang, Aditya Nandy, Heather Kulik
2019.
DOI: 10.26434/chemrxiv.7900277.v1

Towards Fully Ab Initio Simulation of Atmospheric Aerosol Nucleation

S Jiang, YR Liu, T Huang, YJ Feng, CY Wang
arxiv.org, 2021.

Accurate Deep Potential Model for the Al–Cu–Mg Alloy in the Full Concentration Space

W Jiang, Y Zhang, L Zhang, Wang H
iopscience.iop.org, 2021.

Accurate Deep Potential Model for the Al-Cu-Mg Alloy in the Full Concentration Space

Wanrun Jiang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Chinese Physics B, 2021, 30 (5), 050706.
DOI: 10.1088/1674-1056/abf134

Self-Healing Mechanism of Lithium Metal

Junyu Jiao, Genming Lai, Jiaze Lu, Xianqi Xu, Jing Wang, Jiaxin Zheng
2021.

Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, L Lin, Lin Lin, Roberto Car, Linfeng Zhang
ieeexplore.ieee.org, 2021.

On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

Ryosuke Jinnouchi, Kazutoshi Miwa, Ferenc Karsai, Georg Kresse, Ryoji Asahi
Journal of Physical Chemistry Letters, 2020, 11 (17), 6946–6955.
DOI: 10.1021/acs.jpclett.0c01061

Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration

Pei-Lin Kang, Cheng Shang, Zhi-Pan Liu
Accounts of Chemical Research, 2020, 53 (10), 2119–2129.
DOI: 10.1021/acs.accounts.0c00472

Enabling Ab Initio Configurational Sampling of Multicomponent Solids with Long-Range Interactions Using Neural Network Potentials and Active Learning

Shusuke Kasamatsu, Yuichi Motoyama, Kazuyoshi Yoshimi, Ushio Matsumoto, Akihide Kuwabara, Takafumi Ogawa
2020.

Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert Müller, Alexandre Tkatchenko
2021.

Reaction Path-Force Matching in Collective Variables: Determining Ab Initio QM/MM Free Energy Profiles by Fitting Mean Force

Bryant Kim, Ryan Snyder, Mulpuri Nagaraju, Yan Zhou, Pedro Ojeda-May, Seth Keeton, Mellisa Hege, Yihan Shao, Jingzhi Pu
Journal of Chemical Theory and Computation, 2021, 17 (8), 4961–4980.
DOI: 10/gmfw5p

Neural Network Potentials: A Concise Overview of Methods

Emir Kocer, TW Tsz Wai Ko, Jörg Behler, J Behler
arxiv.org, 2021.

Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based Ab Initio Molecular Dynamics. 1. Theory, Algorithm, and Performance

Hsin-Yu Ko, Junteng Jia, Biswajit Santra, Xifan Wu, Roberto Car, Robert DiStasio
Journal of Chemical Theory and Computation, 2020, 16 (6), 3757–3785.
DOI: 10.1021/acs.jctc.9b01167

Isotope Effects in Liquid Water via Deep Potential Molecular Dynamics

Hsin-Yu Ko, Linfeng Zhang, Biswajit Santra, Han Wang, Weinan E, Robert A. DiStasio, Roberto Car
Molecular Physics, 2019, 117 (22), 3269–3281.
DOI: 10.1080/00268976.2019.1652366

N-Body Networks: A Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials

Risi Kondor
2018.

Manifold Learning for Coarse-Graining Atomistic Simulations: Application to Amorphous Solids

Katiana Kontolati, Darius Alix-Williams, Nicholas M. Boffi, Michael L. Falk, Chris H. Rycroft, Michael D. Shields
2021.

Accessing Thermal Conductivity of Complex Compounds by Machine Learning Interatomic Potentials

P Korotaev, I Novoselov, A Yanilkin, A Shapeev B
APS, 2019, 100 (14), 144308.
DOI: 10.1103/physrevb.100.144308

Dielectric Constant of Liquid Water Determined with Neural Network Quantum Molecular Dynamics

Aravind Krishnamoorthy, Ken-ichi Nomura, Nitish Baradwaj, Kohei Shimamura, Pankaj Rajak, Ankit Mishra, Shogo Fukushima, Fuyuki Shimojo, Rajiv Kalia, Aiichiro Nakano, Priya Vashishta
Physical Review Letters, 2021, 126 (21), 216403.
DOI: 10.1103/PhysRevLett.126.216403

Size and Temperature Transferability of Direct and Local Deep Neural Networks for Atomic Forces

Natalia Kuritz, Goren Gordon, Amir Natan
Physical Review B, 2018, 98 (9), 094109.
DOI: 10/gkv2j9

The Estimation of the Second Virial Coefficients of He and N2 Based on Neural Network Potentials with Quantum Mechanical Calculations

Taejin Kwon, Han Wook Song, Sam Yong Woo, Jong-Ho Kim, Bong June Sung
Chemical Physics, 2021, 548, 111231.
DOI: 10/gmf6ws

Machine-Learning-Based Non-Newtonian Fluid Model with Molecular Fidelity

Huan Lei, Lei Wu, Weinan Weinan
Physical Review E, 2020, 102 (4).
DOI: 10.1103/physreve.102.043309

Modeling Electrochemical Interfaces from Ab Initio Molecular Dynamics: Water Adsorption on Metal Surfaces at Potential of Zero Charge

Jia-Bo Le, Jun Cheng
Current Opinion in Electrochemistry, 2020, 19, 129–136.
DOI: 10.1016/j.coelec.2019.11.008

Non-Classical Nucleation Pathways in Stacking-Disordered Crystals

Fabio Leoni, John Russo
2021.

Nonclassical Nucleation Pathways in Stacking-Disordered Crystals

Fabio Leoni, John Russo
Physical Review X, 2021, 11 (3), 031006.
DOI: 10.1103/PhysRevX.11.031006

Accurate and Transferable Reactive Molecular Dynamics Models from Constrained Density Functional Theory

Chenghan Li, Gregory A Voth
, 31.

Analysis of Trajectory Similarity and Configuration Similarity in On-the-Fly Surface-Hopping Simulation on Multi-Channel Nonadiabatic Photoisomerization Dynamics

Xusong Li, Deping Hu, Yu Xie, Zhenggang Lan
Journal of Chemical Physics, 2018, 149 (24), 244104.
DOI: 10.1063/1.5048049

Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl2-KCl Eutectic

Wenshuo Liang, Guimin Lu, Jianguo Yu
Acs Applied Materials \& Interfaces, 2021, 13 (3), 4034–4042.
DOI: 10.1021/acsami.0c20665

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine-Learning-Based Deep Potential

Wenshuo Liang, Guimin Lu, Jianguo Yu
Advanced Theory and Simulations, 2020, 3 (12), 2000180.
DOI: 10.1002/adts.202000180

Theoretical Prediction on the Local Structure and Transport Properties of Molten Alkali Chlorides by Deep Potentials

Wenshuo Liang, Guimin Lu, Jianguo Yu
Journal of Materials Science \& Technology, 2021, 75, 78–85.
DOI: 10/gmf63v

Better Approximations of High Dimensional Smooth Functions by Deep Neural Networks with Rectified Power Units

Bo Li, Shanshan Tang, Haijun Yu
Communications in Computational Physics, 2020, 27 (2), 379–411.
DOI: 10.4208/cicp.OA-2019-0168

CONFORMATION-GUIDED MOLECULAR REPRESENTA- TION WITH HAMILTONIAN NEURAL NETWORKS

Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
2021, 11.

Development of Robust Neural-Network Interatomic Potential for Molten Salt

Qing-Jie Li, Emine Kucukbenli, Stephen Lam, Boris Khaykovich, Efthimios Kaxiras, Ju Li
Cell Reports Physical Science, 2021, 2 (3), 100359.
DOI: 10.1016/j.xcrp.2021.100359

Effect of Local Structural Disorder on Lithium Diffusion Behavior in Amorphous Silicon

Wenwen Li, Yasunobu Ando
Physical Review Materials, 2020, 4 (4).
DOI: 10.1103/physrevmaterials.4.045602

HamNet: Conformation-Guided Molecular Representation with Hamiltonian Neural Networks

Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
2021.

Introducing Block Design in Graph Neural Networks for Molecular Properties Prediction

Yuquan Li, Pengyong Li, Xing Yang, Chang-Yu Hsieh, Shengyu Zhang, Xiaorui Wang, Ruiqiang Lu, Huanxiang Liu, Xiaojun Yao
Chemical Engineering Journal, 2021, 414, 128817.
DOI: 10.1016/j.cej.2021.128817

Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal–Oxide Interfaces

Xiaoke Li, Wolfgang Paier, Joachim Paier
Frontiers in Chemistry, 2020, 8, 601029.
DOI: 10/ghnggc

Multilevel Fine-Tuning: Closing Generalization Gaps in Approximation of Solution Maps Under a Limited Budget for Training Data

Zhihan Li, Yuwei Fan, Lexing Ying
Multiscale Modeling \& Simulation, 2021, 19 (1), 344–373.
DOI: 10.1137/20M1326404

Neural Canonical Transformation with Symplectic Flows

Shuo-Hui Li, Chen-Xiao Dong, Linfeng Zhang, Lei Wang
Physical Review X, 2020, 10 (2), 021020.
DOI: 10.1103/PhysRevX.10.021020

A Neural-Network Based Framework of Developing Cross Interaction in Alloy Embedded-Atom Method Potentials: Application to Zr-Nb Alloy

Bo Lin, Jincheng Wang, Junjie Li, Zhijun Wang
Journal of Physics-Condensed Matter, 2021, 33 (8), 084004.
DOI: 10.1088/1361-648X/abcb69

Numerical Methods for Kohn-Sham Density Functional Theory

Lin Lin, Jianfeng Lu, Lexing Ying
Acta Numerica, 2019, 28, 405–539.
DOI: 10.1017/S0962492919000047

Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials

Qidong Lin, Liang Zhang, Yaolong Zhang, Bin Jiang
Journal of Chemical Theory and Computation, 2021, 17 (5), 2691–2701.
DOI: 10/gmfw5n

Unravelling the Fast Alkali-Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deep-Potential Molecular Dynamics Simulation

Min Lin, Xiangsi Liu, Yuxuan Xiang, Feng Wang, Yunpei Liu, Riqiang Fu, Jun Cheng, Yong Yang
Angewandte Chemie-International Edition, 2021, 60 (22), 12547–12553.
DOI: 10.1002/anie.202102740

PowerNet: Efficient Representations of Polynomials and Smooth Functions by Deep Neural Networks with Rectified Power Units

Bo Li, Shanshan Tang, Haijun Yu
Journal of Mathematical Study, 2020, 53 (2), 159–191.
DOI: 10.4208/jms.v53n2.20.03

Theoretical Study of Na+ Transport in the Solid-State Electrolyte Na3OBr Based on Deep Potential Molecular Dynamics

Han-Xiao Li, Xu-Yuan Zhou, Yue-Chao Wang, Hong Jiang
Inorganic Chemistry Frontiers, 2021, 8 (2), 425–432.
DOI: 10.1039/d0qi00921k

Machine Learning Phase Space Quantum Dynamics Approaches

Xinzijian Liu, Linfeng Zhang, Jian Liu
Journal of Chemical Physics, 2021, 154 (18), 184104.
DOI: 10.1063/5.0046689

A Unified Deep Neural Network Potential Capable of Predicting Thermal Conductivity of Silicon in Different Phases

R. Li, E. Lee, T. Luo
Materials Today Physics, 2020, 12, 100181.
DOI: 10.1016/j.mtphys.2020.100181

Rapid Detection of Strong Correlation with Machine Learning for Transition-Metal Complex High-Throughput Screening

Fang Liu, Chenru Duan, Heather J. Kulik
Journal of Physical Chemistry Letters, 2020, 11 (19), 8067–8076.
DOI: 10.1021/acs.jpclett.0c02288

Structure and Dynamics of Warm Dense Aluminum: A Molecular Dynamics Study with Density Functional Theory and Deep Potential

Qianrui Liu, Denghui Lu, Mohan Chen
Journal of Physics-Condensed Matter, 2020, 32 (14), 144002.
DOI: 10.1088/1361-648X/ab5890

Thermal Transport by Electrons and Ions in Warm Dense Aluminum: A Combined Density Functional Theory and Deep Potential Study

Qianrui Liu, Junyi Li, Mohan Chen
Matter and Radiation at Extremes, 2021, 6 (2).
DOI: 10.1063/5.0030123

Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning

Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing Ma
Journal of Chemical Information and Modeling, 2021, 61 (3), 1066–1082.
DOI: 10.1021/acs.jcim.0c01224

Active Learning a Coarse-Grained Neural Network Model for Bulk Water from Sparse Training Data

TD Loeffler, TK Patra, Chan H
pubs.rsc.org.

Active Learning a Neural Network Model for Gold Clusters\& Bulk from Sparse First Principles Training Data

TD Loeffler, S Manna, TK Patra, Chan H
arxiv.org, 2020.

Active Learning the Potential Energy Landscape for Water Clusters from Sparse Training Data

Troy D. Loeffler, Tarak K. Patra, Henry Chan, Mathew Cherukara, Subramanian K.R.S. Sankaranarayanan
Journal of Physical Chemistry C, 2020, 124 (8), 4907–4916.
DOI: 10.1021/acs.jpcc.0c00047

PDE-Net 2.0: Learning PDEs from Data with a Numeric-Symbolic Hybrid Deep Network

Zichao Long, Yiping Lu, Bin Dong
Journal of Computational Physics, 2019, 399, 108925.
DOI: 10.1016/j.jcp.2019.108925

PANNA: Properties from Artificial Neural Network Architectures

Ruggero Lot, Franco Pellegrini, Yusuf Shaidu, Emine Kucukbenli
Computer Physics Communications, 2020, 256, 107402.
DOI: 10.1016/j.cpc.2020.107402

Deep Learning: New Engine for the Study of Material Microstructures and Physical Properties

G Lu, S Duan
Modern Physics 现代物理, 2019, 2019 (6), 263–276.
DOI: 10.12677/mp.2019.96026

Dataset Construction to Explore Chemical Space with 3D Geometry and Deep Learning

Jianing Lu, Song Xia, Jieyu Lu, Yingkai Zhang
Journal of Chemical Information and Modeling, 2021, 61 (3), 1095–1104.
DOI: 10.1021/acs.jcim.1c00007

Deep Potential Molecular Dynamics Simulation of 100 Million Atoms with Ab Initio Accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

Deep Potential Molecular Dynamics Simulation of 100 Million Atoms with Ab Initio Accuracy

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, Linfeng Zhang
Computer Physics Communications, 2021, 259, 107624.
DOI: 10.1016/j.cpc.2020.107624

DP Train, Then DP Compress: Model Compression in Deep Potential Molecular Dynamics

D Lu, W Jiang, Y Chen, L Zhang, W Jia, H Wang
arxiv.org, 2021.

A Unified Picture of the Covalent Bond within Quantum-Accurate Force Fields: From Organic Molecules to Metallic Complexes' Reactivity

Alessandro Lunghi, Stefano Sanvito
Science Advances, 2019, 5 (5), eaaw2210.
DOI: 10.1126/sciadv.aaw2210

Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO3 Melt at Mantle Conditions

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geophysical Research Letters, 2021, 48 (13), e2021GL093573.
DOI: 10/gkrt5v

Deep Neural Network Potentials for Diffusional Lithium Isotope Fractionation in Silicate Melts

Haiyang Luo, Bijaya B. Karki, Dipta B. Ghosh, Huiming Bao
Geochimica et Cosmochimica Acta, 2021, 303, 38–50.
DOI: 10/gmf625

Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network

Jianing Lu, Cheng Wang, Yingkai Zhang
Journal of Chemical Theory and Computation, 2019, 15 (7), 4113–4121.
DOI: 10.1021/acs.jctc.9b00001

Deep Learning Observables in Computational Fluid Dynamics

KO Lye, S Mishra, D Ray - Journal of Computational Physics, undefined 2020
Elsevier, 2019.

A Fast Neural Network Approach for Direct Covariant Forces Prediction in Complex Multi-Element Extended Systems

Jonathan P. Mailoa, Mordechai Kornbluth, Simon Batzner, Georgy Samsonidze, Stephen T. Lam, Jonathan Vandermause, Chris Ablitt, Nicola Molinari, Boris Kozinsky
Nature Machine Intelligence, 2019, 1 (10), 471–479.
DOI: 10.1038/s42256-019-0098-0

Evaluation of Experimental Alkali Metal Ion-Ligand Noncovalent Bond Strengths with DLPNO-CCSD(T) Method

Bholanath Maity, Yury Minenkov, Luigi Cavallo
Journal of Chemical Physics, 2019, 151 (1), 014301.
DOI: 10.1063/1.5099580

Transferability of Neural Network Potentials for Varying Stoichiometry: Phonons and Thermal Conductivity of Mn\$_x\$Ge\$_y\$ Compounds

Claudia Mangold, Shunda Chen, Giuseppe Barbalinardo, Joerg Behler, Pascal Pochet, Konstantinos Termentzidis, Yang Han, Laurent Chaput, David Lacroix, Davide Donadio
Journal of Applied Physics, 2020, 127 (24), 244901.
DOI: 10/gg7jww

Machine Learning for Metallurgy I. A Neural-Network Potential for Al-Cu

Daniel Marchand, Abhinav Jain, Albert Glensk, W. A. Curtin
Physical Review Materials, 2020, 4 (10).
DOI: 10.1103/physrevmaterials.4.103601

Simulating Diffusion Properties of Solid-State Electrolytes via a Neural Network Potential: Performance and Training Scheme

Aris Marcolongo, Tobias Binninger, Federico Zipoli, Teodoro Laino
2019.

Connection between Liquid and Non-Crystalline Solid Phases in Water

Fausto Martelli, Fabio Leoni, Francesco Sciortino, John Russo
Journal of Chemical Physics, 2020, 153 (10), 104503.
DOI: 10.1063/5.0018923

Deep Learning in Chemistry

Adam C. Mater, Michelle L. Coote
Journal of Chemical Information and Modeling, 2019, 59 (6), 2545–2559.
DOI: 10.1021/acs.jcim.9b00266

Machine-Learning Interatomic Potentials for Materials Science

Y Mishin - Acta Materialia, undefined 2021
Elsevier, 2021.

Machine Learning Enhanced Global Optimization by Clustering Local Environments to Enable Bundled Atomic Energies

Soren A. Meldgaard, Esben L. Kolsbjerg, Bjork Hammer
Journal of Chemical Physics, 2018, 149 (13), 134104.
DOI: 10.1063/1.5048290

Transformative Applications of Machine Learning for Chemical Reactions

M. Meuwly
2021.

Liquid to Crystal Si Growth Simulation Using Machine Learning Force Field

Ling Miao, Lin Wang Wang
Journal of Chemical Physics, 2020, 153 (7).
DOI: 10.1063/5.0011163

Strategies for the Construction of Machine-Learning Potentials for Accurate and Efficient Atomic-Scale Simulations

April M. Miksch, Tobias Morawietz, Johannes Kaestner, Alexander Urban, Nongnuch Artrith
Machine Learning-Science and Technology, 2021, 2 (3), 031001.
DOI: 10.1088/2632-2153/abfd96

Gas Phase Silver Thermochemistry from First Principles

Irina Minenkova, Valery V. Slizney, Luigi Cavallo, Yury Minenkov
Inorganic Chemistry, 2019, 58 (12), 7873–7885.
DOI: 10.1021/acs.inorgchem.9b00556

An Automated Approach for Developing Neural Network Interatomic Potentials with FLAME

H Mirhosseini, H Tahmasbi, SR Kuchana - Computational Materials …, undefined 2021
Elsevier, 2021.

Molecular Dynamics Properties without the Full Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids

Alireza Moradzadeh, N. R. Aluru
Journal of Physical Chemistry Letters, 2019, 10 (24), 7568–7576.
DOI: 10.1021/acs.jpclett.9b02820

Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach

Manuel D. Morales, Javier M. Antelis, Claudia Moreno, Alexander I. Nesterov
Sensors, 2021, 21 (9), 3174.
DOI: 10/gmgfm6

Machine Learning-Accelerated Quantum Mechanics-Based Atomistic Simulations for Industrial Applications

Tobias Morawietz, Nongnuch Artrith
Journal of Computer-Aided Molecular Design, 2021, 35 (4), 557–586.
DOI: 10.1007/s10822-020-00346-6

Transfer Learning of Potential Energy Surfaces for Efficient Atomistic Modeling of Doping and Alloy

Pinghui Mo, Mengchao Shi, Wenze Yao, Jie Liu
IEEE Electron Device Letters, 2020, 41 (4), 633–636.
DOI: 10/gg2bfc

Assessment of Localized and Randomized Algorithms for Electronic Structure

Jonathan E. Moussa, Andrew D. Baczewski
Electronic Structure, 2019, 1 (3), 033001.
DOI: 10.1088/2516-1075/ab2022

The Dynamic Control of the Light Signalling Device in Real-Time

Jan Mrazek, Lucia Duricova Mrazkova, Martin Hromada, Jana Reznickova
MATEC Web of Conferences, 2019, 292, 03014.
DOI: 10/gmgfts

Traffic Control Through Traffic Density

Jan Mrazek, Lucia Duricova Mrazkova, Martin Hromada
2019 3rd European Conference on Electrical Engineering and Computer Science (Eecs 2019), 2019, 19–21.
DOI: 10.1109/EECS49779.2019.00017

Machine Learning for Interatomic Potential Models

Tim Mueller, Alberto Hernandez, Chuhong Wang
Journal of Chemical Physics, 2020, 152 (5), 050902.
DOI: 10.1063/1.5126336

Supervised Learning of Few Dirty Bosons with Variable Particle Number

P Mujal, À Martínez Miguel, A Polls
scipost.org, 2020.

Machine Learning at the Atomic Scale

Felix Musil, Michele Ceriotti
Chimia, 2019, 73 (12), 972–982.
DOI: 10.2533/chimia.2019.972

Non-Empirical Weighted Langevin Mechanics for the Potential Escape Problem: Parallel Algorithm and Application to the Argon Clusters

Yuri S. Nagornov, Ryosuke Akashi
Physica A: Statistical Mechanics and its Applications, 2019, 528, 121481.
DOI: 10.1016/j.physa.2019.121481

Learning Intermolecular Forces at Liquid-Vapor Interfaces

Samuel P. Niblett, Mirza Galib, David T. Limmer
2021.

Recursive Evaluation and Iterative Contraction of N-Body Equivariant Features

Jigyasa Nigam, Sergey Pozdnyakov, Michele Ceriotti
Journal of Chemical Physics, 2020, 153 (12), 121101.
DOI: 10.1063/5.0021116

Quantum-Accurate Magneto-Elastic Predictions with Classical Spin-Lattice Dynamics

Svetoslav Nikolov, Mitchell A. Wood, Attila Cangi, Jean-Bernard Maillet, Mihai-Cosmin Marinica, Aidan P. Thompson, Michael P. Desjarlais, Julien Tranchida
2021.

Ab Initio Phase Diagram and Nucleation of Gallium

Haiyang Niu, Luigi Bonati, Pablo M. Piaggi, Michele Parrinello
Nature Communications, 2020, 11 (1), 2654.
DOI: 10.1038/s41467-020-16372-9

The MLIP Package: Moment Tensor Potentials with MPI and Active Learning

Ivan S. Novikov, Konstantin Gubaev, Evgeny Podryabinkin, Alexander Shapeev
Machine Learning-Science and Technology, 2021, 2 (2), 025002.
DOI: 10.1088/2632-2153/abc9fe

Modeling H2O/Rutile-TiO2(110) Potential Energy Surfaces with Deep Networks

Stefan Oehmcke, Thomas Teusch, Thorben Petersen, Thorsten Kluener, Oliver Kramer
2020 International Joint Conference on Neural Networks (Ijcnn), 2020.

Catalytic Materials and Chemistry Development Using a Synergistic Combination of Machine Learning and Ab Initio Methods

Nilesh Varadan Orupattur, Samir H. Mushrif, Vinay Prasad
Computational Materials Science, 2020, 174, 109474.
DOI: 10.1016/j.commatsci.2019.109474

A Bin and Hash Method for Analyzing Reference Data and Descriptors in Machine Learning Potentials

Martin Leandro Paleico, Joerg Behler
Machine Learning-Science and Technology, 2021, 2 (3), 037001.
DOI: 10.1088/2632-2153/abe663

Machine Learning Assisted Free Energy Simulation of Solution–Phase and Enzyme Reactions

X Pan, R Van, E Epifanovsky, J Ho, J Huang, J Pu
2021.

A DFT Accurate Machine Learning Description of Molten ZnCl2 and Its Mixtures: 1. Potential Development and Properties Prediction of Molten ZnCl2

Gechuanqi Pan, Pin Chen, Hui Yan, Yutong Lu
Computational Materials Science, 2020, 185, 109955.
DOI: 10.1016/j.commatsci.2020.109955

A DFT Accurate Machine Learning Description of Molten ZnCl2 and Its Mixtures: 2. Potential Development and Properties Prediction of ZnCl2-NaCl-KCl Ternary Salt for CSP

Gechuanqi Pan, Jing Ding, Yunfei Du, Duu-Jong Lee, Yutong Lu
Computational Materials Science, 2021, 187, 110055.
DOI: 10.1016/j.commatsci.2020.110055

Accurate and Scalable Graph Neural Network Force Field and Molecular Dynamics with Direct Force Architecture

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozinsky, Jonathan P. Mailoa
Npj Computational Materials, 2021, 7 (1), 73.
DOI: 10.1038/s41524-021-00543-3

Accurate and Scalable Multi-Element Graph Neural Network Force Field and Molecular Dynamics with Direct Force Architecture

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Jonathan P Mailoa
, 33.

A Fourier-Based Machine Learning Technique with Application in Engineering

Michael Peigney
International Journal for Numerical Methods in Engineering, 2021, 122 (3), 866–897.
DOI: 10.1002/nme.6565

Efficient Long-Range Convolutions for Point Clouds

Yifan Peng, Lin Lin, Lexing Ying, Leonardo Zepeda-Núñez
2020.

Simulations Meet Machine Learning in Structural Biology

Adrià Pérez, Gerard Martínez-Rosell, Gianni De Fabritiis
Current Opinion in Structural Biology, 2018, 49, 139–144.
DOI: 10/gdnsnp

Enhancing the Formation of Ionic Defects to Study the Ice Ih/XI Transition with Molecular Dynamics Simulations

Pablo M. Piaggi, Roberto Car
Molecular Physics, 2021.
DOI: 10.1080/00268976.2021.1916634

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

Pablo M. Piaggi, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, Roberto Car
Journal of Chemical Theory and Computation, 2021, 17 (5), 3065–3077.
DOI: 10.1021/acs.jctc.1c00041

Machine Learning Force Fields: Recent Advances and Remaining Challenges

Igor Poltavsky, Alexandre Tkatchenko
Journal of Physical Chemistry Letters, 2021, 12 (28), 6551–6564.
DOI: 10.1021/acs.jpclett.1c01204

On Application of Deep Learning to Simplified Quantum-Classical Dynamics in Electronically Excited States

Evgeny Posenitskiy, Fernand Spiegelman, Didier Lemoine
Machine Learning-Science and Technology, 2021, 2 (3), 035039.
DOI: 10.1088/2632-2153/abfe3f

Atomistic Simulations of the Thermal Conductivity of Liquids

Marcello Puligheddu, Giulia Galli
Physical Review Materials, 2020, 4 (5), 053801.
DOI: 10.1103/PhysRevMaterials.4.053801

A Comprehensive Assessment of Empirical Potentials for Carbon Materials

Cheng Qian, Ben McLean, Daniel Hedman, Feng Ding
APL Materials, 2021, 9 (6).
DOI: 10.1063/5.0052870

OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features

Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R. Manby, Thomas F. Miller
Journal of Chemical Physics, 2020, 153 (12), 124111.
DOI: 10.1063/5.0021955

Interaction Energy Prediction of Organic Molecules Using Deep Tensor Neural Network

Yuan Qi, Hong Ren, Hong Li, Ding-lin Zhang, Hong-qiang Cui, Jun-ben Weng, Guo-hui Li, Gui-yan Wang, Yan Li
Chinese Journal of Chemical Physics, 2021, 34 (1), 112–124.
DOI: 10.1063/1674-0068/cjcp2009163

Machine Learning of Atomic Forces from Quantum Mechanics: A Model Based on Pairwise Interatomic Forces

I Ramzan, L Kong, R A Bryce, N A Burton
, 39.

Unsupervised Learning of Atomic Environments from Simple Features

Wesley F. Reinhart
Computational Materials Science, 2021, 196, 110511.
DOI: 10.1016/j.commatsci.2021.110511

Halogen Bond Structure and Dynamics from Molecular Simulations

Richard C. Remsing, Michael L. Klein
Journal of Physical Chemistry B, 2019, 123 (29), 6266–6273.
DOI: 10.1021/acs.jpcb.9b04820

Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System

Hong-Bin Ren, Lei Wang, Xi Dai
Chinese Physics Letters, 2021, 38 (5), 050701.
DOI: 10.1088/0256-307X/38/5/050701

Spatial Density Neural Network Force Fields with First-Principles Level Accuracy and Application to Thermal Transport

Alejandro Rodriguez, Yinqiao Liu, Ming Hu
Physical Review B, 2020, 102 (3), 035203.
DOI: 10.1103/PhysRevB.102.035203

Biophysical Analysis of SARS-CoV-2 Transmission and Theranostic Development via N Protein Computational Characterization

Godfred O. Sabbih, Maame A. Korsah, Jaison Jeevanandam, Michael K. Danquah
Biotechnology Progress, 2021, 37 (2), e3096.
DOI: 10.1002/btpr.3096

Active Learning of Potential-Energy Surfaces of Weakly-Bound Complexes with Regression-Tree Ensembles

Yahya Saleh, Vishnu Sanjay, Armin Iske, Andrey Yachmenev, Jochen Küpper
2021.

Closing the Gap Between Modeling and Experiments in the Self-Assembly of Biomolecules at Interfaces and in Solution

Janani Sampath, Sarah Alamdari, Jim Pfaendtner
Chemistry of Materials, 2020, 32 (19), 8043–8059.
DOI: 10.1021/acs.chemmater.0c01891

Scalable Neural Networks for the Efficient Learning of Disordered Quantum Systems

N. Saraceni, S. Cantori, S. Pilati
Physical Review E, 2020, 102 (3).
DOI: 10.1103/physreve.102.033301

Molecular Force Fields with Gradient-Domain Machine Learning: Construction and Application to Dynamics of Small Molecules with Coupled Cluster Forces

Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky, Klaus-Robert Müller, Alexandre Tkatchenko
The Journal of Chemical Physics, 2019, 150 (11), 114102.
DOI: 10/ghqtd7

Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids

Christoph Scherer, Rene Scheid, Denis Andrienko, Tristan Bereau
Journal of Chemical Theory and Computation, 2020, 16 (5), 3194–3204.
DOI: 10.1021/acs.jctc.9b01256

From DFT to Machine Learning: Recent Approaches to Materials Science-a Review

Gabriel R. Schleder, Antonio C. M. Padilha, Carlos Mera Acosta, Marcio Costa, Adalberto Fazzio
Journal of Physics-Materials, 2019, 2 (3), 032001.
DOI: 10.1088/2515-7639/ab084b

Recent Advances and Applications of Machine Learning in Solid-State Materials Science

Jonathan Schmidt, Mario R. G. Marques, Silvana Botti, Miguel A. L. Marques
Npj Computational Materials, 2019, 5, 83.
DOI: 10.1038/s41524-019-0221-0

Committee Neural Network Potentials Control Generalization Errors and Enable Active Learning

Christoph Schran, Krystof Brezina, Ondrej Marsalek
Journal of Chemical Physics, 2020, 153 (10), 104105.
DOI: 10.1063/5.0016004

Transferability of Machine Learning Potentials: Protonated Water Neural Network Potential Applied to the Protonated Water Hexamer

Christoph Schran, Fabien Brieuc, Dominik Marx
Journal of Chemical Physics, 2021, 154 (5), 051101.
DOI: 10.1063/5.0035438

Schnet–a Deep Learning Architecture for Molecules and Materials

Kristof T. Schütt, Huziel E. Sauceda, P.-J. Kindermans, Alexandre Tkatchenko, K.-R. Müller
The Journal of Chemical Physics, 2018, 148 (24), 241722.
DOI: 10.1063/1.5019779

SchNetPack: A Deep Learning Toolbox For Atomistic Systems

K. T. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.-R. Müller
Journal of Chemical Theory and Computation, 2019, 15 (1), 448–455.
DOI: 10/gfrbqm

Differentiable Sampling of Molecular Geometries with Uncertainty-Based Adversarial Attacks

Daniel Schwalbe-Koda, Aik Rui Tan, Rafael Gómez-Bombarelli
2021.

Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force-Fields

Bumjoon Seo, Zih-Yu Lin, Qiyuan Zhao, Michael A Webb, M Savoie
, 43.

Anharmonic Raman Spectra Simulation of Crystals from Deep Neural Networks

Honghui Shang, Haidi Wang
Aip Advances, 2021, 11 (3), 035105.
DOI: 10.1063/5.0040190

Modelling Bulk Electrolytes and Electrolyte Interfaces with Atomistic Machine Learning

Yunqi Shao, Lisanne Knijff, Florian M. Dietrich, Kersti Hermansson, Chao Zhang
Batteries \& Supercaps, 2021, 4 (4), 585–595.
DOI: 10.1002/batt.202000262

PiNN: A Python Library for Building Atomic Neural Networks of Molecules and Materials

Yunqi Shao, Matti Hellstrom, Pavlin D. Mitev, Lisanne Knijff, Chao Zhang
Journal of Chemical Information and Modeling, 2020, 60 (3), 1184–1193.
DOI: 10.1021/acs.jcim.9b00994

Elinvar Effect in Beta-Ti Simulated by on-the-Fly Trained Moment Tensor Potential

Alexander Shapeev, Evgeny Podryabinkin, Konstantin Gubaev, Ferenc Tasnadi, Igor A. Abrikosov
New Journal of Physics, 2020, 22 (11), 113005.
DOI: 10.1088/1367-2630/abc392

PFNN: A Penalty-Free Neural Network Method for Solving a Class of Second-Order Boundary-Value Problems on Complex Geometries

Hailong Sheng, Chao Yang
Journal of Computational Physics, 2021, 428, 110085.
DOI: 10.1016/j.jcp.2020.110085

Quantum Trajectory Mean-Field Method for Nonadiabatic Dynamics in Photochemistry

Lin Shen, Diandong Tang, Binbin Xie, Wei-Hai Fang
Journal of Physical Chemistry A, 2019, 123 (34), 7337–7350.
DOI: 10.1021/acs.jpca.9b03480

Application of Genetic Algorithm in the Global Structure Optimization of Catalytic System

Xiangcheng Shi, Zhijian Zhao, Jinlong Gong
Huagong Xuebao/CIESC Journal, 2021, 72 (1), 27–41.
DOI: 10.11949/0438-1157.20201037

Learning Gradient Fields for Molecular Conformation Generation

Chence Shi, Shitong Luo, Minkai Xu, Jian Tang
2021.

Computational and Training Requirements for Interatomic Potential Based on Artificial Neural Network for Estimating Low Thermal Conductivity of Silver Chalcogenides

Kohei Shimamura, Yusuke Takeshita, Shogo Fukushima, Akihide Koura, Fuyuki Shimojo
Journal of Chemical Physics, 2020, 153 (23), 234301.
DOI: 10.1063/5.0027058

Estimating Thermal Conductivity of α-Ag2Se Using ANN Potential with Chebyshev Descriptor

Kohei Shimamura, Yusuke Takeshita, Shogo Fukushima, Akihide Koura, Fuyuki Shimojo
Chemical Physics Letters, 2021, 778, 138748.
DOI: 10/gj42cx

Guidelines for Creating Artificial Neural Network Empirical Interatomic Potential from First-Principles Molecular Dynamics Data under Specific Conditions and Its Application to Alpha-Ag2Se

Kohei Shimamura, Shogo Fukushima, Akihide Koura, Fuyuki Shimojo, Masaaki Misawa, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, Takashi Matsubara, Shigenori Tanaka
Journal of Chemical Physics, 2019, 151 (12), 124303.
DOI: 10.1063/1.5116420

Water Dipole and Quadrupole Moment Contributions to the Ion Hydration Free Energy by the Deep Neural Network Trained with Ab Initio Molecular Dynamics Data

Yu Shi, Carrie C Doyle, Thomas L Beck
, 20.

Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties

Paul Sinz, Michael W. Swift, Xavier Brumwell, Jialin Liu, Kwang Jin Kim, Yue Qi, Matthew Hirn
Journal of Chemical Physics, 2020, 153 (8), 084109.
DOI: 10.1063/5.0016020

Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide

Ganesh Sivaraman, Leighanne Gallington, Anand Narayanan Krishnamoorthy, Marius Stan, Gábor Csányi, Álvaro Vázquez-Mayagoitia, Chris J. Benmore
Physical Review Letters, 2021, 126 (15), 156002.
DOI: 10/gkx66f

The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules

Justin S. Smith, Roman Zubatyuk, Benjamin Nebgen, Nicholas Lubbers, Kipton Barros, Adrian E. Roitberg, Olexandr Isayev, Sergei Tretiak
Scientific Data, 2020, 7 (1), 134.
DOI: 10/gh48xw

Raman Spectrum and Polarizability of Liquid Water from Deep Neural Networks

Grace M. Sommers, Marcos F. Calegari Andrade, Linfeng Zhang, Han Wang, Roberto Car
Physical Chemistry Chemical Physics, 2020, 22 (19), 10592–10602.
DOI: 10.1039/d0cp01893g

Machine Learning for Metallurgy II. A Neural-Network Potential for Magnesium

Markus Stricker, Binglun Yin, Eleanor Mak, W. A. Curtin
Physical Review Materials, 2020, 4 (10).
DOI: 10.1103/physrevmaterials.4.103602

Toward Exascale Design of Soft Mesoscale Materials

S Succi, G Amati, F Bonaccorso, M Lauricella - Journal of …, undefined 2020
Elsevier, 2020.

Gaussian Process Model of 51-Dimensional Potential Energy Surface for Protonated Imidazole Dimer

Hiroki Sugisawa, Tomonori Ida, R. Krems
Journal of Chemical Physics, 2020, 153 (11), 114101.
DOI: 10.1063/5.0023492

TeaNet: Universal Neural Network Interatomic Potential Inspired by Iterative Electronic Relaxations

So Takamoto, Satoshi Izumi, Ju Li
2019.

Interatomic Potential in a Simple Dense Neural Network Representation

Ka-Ming Tam, Nicholas Walker, Samuel Kellar, Mark Jarrell
2019.

Prediction of Formation Energies of Large-Scale Disordered Systems via Active-Learning-Based Executions of Ab Initio Local-Energy Calculations: A Case Study on a Fe Random Grain Boundary Model with Millions of Atoms

Tomoyuki Tamura, Masayuki Karasuyama
Physical Review Materials, 2020, 4 (11).
DOI: 10.1103/physrevmaterials.4.113602

ChebNet: Efficient and Stable Constructions of Deep Neural Networks with Rectified Power Units Using Chebyshev Approximations

Shanshan Tang, Bo Li, Haijun Yu
2019.

Development of Interatomic Potential for Al-Tb Alloys Using a Deep Neural Network Learning Method

L. Tang, Z. J. Yang, T. Q. Wen, K. M. Ho, M. J. Kramer, C. Z. Wang
Physical Chemistry Chemical Physics, 2020, 22 (33), 18467–18479.
DOI: 10.1039/d0cp01689f

Short- and Medium-Range Orders in Al90Tb10 Glass and Their Relation to the Structures of Competing Crystalline Phases

L. Tang, Z. J. Yang, T. Q. Wen, K. M. Ho, M. J. Kramer, C. Z. Wang
Acta Materialia, 2021, 204, 116513.
DOI: 10.1016/j.actamat.2020.116513

Machine Learning and Molecular Design of Self-Assembling Pi-Conjugated Oligopeptides

Bryce A. Thurston, Andrew L. Ferguson
Molecular Simulation, 2018, 44 (11), 930–945.
DOI: 10.1080/08927022.2018.1469754

The Repetitive Local Sampling and the Local Distribution Theory

Pu Tian
, 32.

Combining Machine Learning Potential and Structure Prediction for Accelerated Materials Design and Discovery

Qunchao Tong, Pengyue Gao, Hanyu Liu, Yu Xie, Jian Lv, Yanchao Wang, Jijun Zhao
Journal of Physical Chemistry Letters, 2020, 11 (20), 8710–8720.
DOI: 10.1021/acs.jpclett.0c02357

Machine Learning Metadynamics Simulation of Reconstructive Phase Transition

Qunchao Tong, Xiaoshan Luo, Adebayo A. Adeleke, Pengyue Gao, Yu Xie, Hanyu Liu, Quan Li, Yanchao Wang, Jian Lv, Yansun Yao, Yanming Ma
Physical Review B, 2021, 103 (5), 054107.
DOI: 10/gmf5zv

Geometric Prediction: Moving Beyond Scalars

Raphael J. L. Townshend, Brent Townshend, Stephan Eismann, Ron O. Dror
2020.

Transferrable End-to-End Learning for Protein Interface Prediction

Raphael JL Townshend, Rishi Bedi, Ron O. Dror
2018.

A Machine Learning Based Deep Potential for Seeking the Low-Lying Candidates of Al Clusters

P. Tuo, X. B. Ye, B. C. Pan
Journal of Chemical Physics, 2020, 152 (11), 114105.
DOI: 10.1063/5.0001491

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges

Oliver T. Unke, Markus Meuwly
Journal of Chemical Theory and Computation, 2019, 15 (6), 3678–3693.
DOI: 10.1021/acs.jctc.9b00181

SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects

Oliver T. Unke, Stefan Chmiela, Michael Gastegger, Kristof T. Schütt, Huziel E. Sauceda, Klaus-Robert Müller
2021.

Active Learning of Reactive Bayesian Force Fields: Application to Heterogeneous Hydrogen-Platinum Catalysis Dynamics

J Vandermause, Y Xie, JS Lim, CJ Owen - arXiv preprint arXiv …, undefined 2021
arxiv.org, 2021.

On-the-Fly Active Learning of Interpretable Bayesian Force Fields for Atomistic Rare Events

Jonathan Vandermause, Steven B. Torrisi, Simon Batzner, Yu Xie, Lixin Sun, Alexie M. Kolpak, Boris Kozinsky
Npj Computational Materials, 2020, 6 (1), 20.
DOI: 10.1038/s41524-020-0283-z

On-the-Fly Bayesian Active Learning of Interpretable Force-Fields for Atomistic Rare Events

J Vandermause, SB Torrisi, S Batzner
projects.iq.harvard.edu, 2019.

Challenges for Machine Learning Force Fields in Reproducing Potential Energy Surfaces of Flexible Molecules

Valentin Vassilev-Galindo, Gregory Fonseca, Igor Poltavsky, Alexandre Tkatchenko
Journal of Chemical Physics, 2021, 154 (9), 094119.
DOI: 10.1063/5.0038516

Bayesian Machine Learning Approach to the Quantification of Uncertainties on Ab Initio Potential Energy Surfaces

S. Venturi, R. L. Jaffe, M. Panesi
Journal of Physical Chemistry A, 2020, 124 (25), 5129–5146.
DOI: 10.1021/acs.jpca.0c02395

Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers

Niki Vergadou, Doros N. Theodorou
Membranes, 2019, 9 (8), 98.
DOI: 10.3390/membranes9080098

Faster Exact Exchange in Periodic Systems Using Single-Precision Arithmetic

John Vinson
Journal of Chemical Physics, 2020, 153 (20), 204106.
DOI: 10.1063/5.0030493

Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy

Zhilong Wang, Yanqiang Han, Jinjin Li, Xiao He
Journal of Physical Chemistry B, 2020, 124 (15), 3027–3035.
DOI: 10.1021/acs.jpcb.0c01370

Complex Reaction Network Thermodynamic and Kinetic Autoconstruction Based on \emphAb Initio Statistical Mechanics: A Case Study of O \textsubscript2 Activation on Ag \textsubscript4 Clusters

Weiqi Wang, Xiangyue Liu, Jesús Pérez-Ríos
The Journal of Physical Chemistry A, 2021, 125 (25), 5670–5680.
DOI: 10/gmfw5m

Crystal Structure Prediction of Binary Alloys via Deep Potential

Haidi Wang, Yuzhi Zhang, Linfeng Zhang, Han Wang
Frontiers in Chemistry, 2020, 8, 589795.
DOI: 10.3389/fchem.2020.589795

Deep Learning Inter-Atomic Potential Model for Accurate Irradiation Damage Simulations

Hao Wang, Xun Guo, Linfeng Zhang, Han Wang, Jianming Xue
Applied Physics Letters, 2019, 114 (24), 244101.
DOI: 10.1063/1.5098061

Deep-Learning Interatomic Potential for Irradiation Damage Simulations in MoS2 with Ab Initial Accuracy

Hao Wang, Xun Guo, Jianming Xue
2020.

DeePMD-Kit: A Deep Learning Package for Many-Body Potential Energy Representation and Molecular Dynamics

Han Wang, Linfeng Zhang, Jiequn Han, Weinan E
Computer Physics Communications, 2018, 228, 178–184.
DOI: 10.1016/j.cpc.2018.03.016

Differentiable Molecular Simulations for Control and Learning

Wujie Wang, Simon Axelrod, Rafael Gómez-Bombarelli
2020.

Electronically Driven 1D Cooperative Diffusion in a Simple Cubic Crystal

Yong Wang, Junjie Wang, Andreas Hermann, Cong Liu, Hao Gao, Erio Tosatti, Hui-Tian Wang, Dingyu Xing, Jian Sun
Physical Review X, 2021, 11 (1), 011006.
DOI: 10.1103/PhysRevX.11.011006

Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach

Jiang Wang, Stefan Chmiela, Klaus-Robert Mueller, Frank Noe, Cecilia Clementi
Journal of Chemical Physics, 2020, 152 (19).
DOI: 10.1063/5.0007276

An Extendible, Graph-Neural-Network-Based Approach for Accurate Force Field Development of Large Flexible Organic Molecules

Xufei Wang, Yuanda Xu, Han Zheng, Kuang Yu
arxiv.org, 2021.

Machine Learning of Coarse-Grained Molecular Dynamics Force Fields

Jiang Wang, Simon Olsson, Christoph Wehmeyer, Adria Perez, Nicholas E. Charron, Gianni de Fabritiis, Frank Noe, Cecilia Clementi
Acs Central Science, 2019, 5 (5), 755–767.
DOI: 10.1021/acscentsci.8b00913

Multi-Body Effects in a Coarse-Grained Protein Force Field

Jiang Wang, Nicholas Charron, Brooke Husic, Simon Olsson, Frank Noé, Cecilia Clementi
Journal of Chemical Physics, 2021, 154 (16).
DOI: 10.1063/5.0041022

Predicting Adsorption Ability of Adsorbents at Arbitrary Sites for Pollutants Using Deep Transfer Learning

Zhilong Wang, Haikuo Zhang, Jiahao Ren, Xirong Lin, Tianli Han, Jinyun Liu, Jinjin Li
Npj Computational Materials, 2021, 7 (1), 19.
DOI: 10.1038/s41524-021-00494-9

Symmetry-Adapted Graph Neural Networks for Constructing Molecular Dynamics Force Fields

Zun Wang, Chong Wang, Sibo Zhao, Shiqiao Du, Yong Xu, Bing-Lin Gu, Wenhui Duan
2021.

Integrating Machine Learning with Physics-Based Modeling

E Weinan, Jiequn Han, Zhang Linfeng
2020.

Properties of Alpha-Brass Nanoparticles. 1. Neural Network Potential Energy Surface

Jan Weinreich, Anton Roemer, Martin Leandro Paleico, Joerg Behler
Journal of Physical Chemistry C, 2020, 124 (23), 12682–12695.
DOI: 10.1021/acs.jpcc.0c00559

Development of a Deep Machine Learning Interatomic Potential for Metalloid-Containing Pd-Si Compounds

Tongqi Wen, Cai-Zhuang Wang, M. J. Kramer, Yang Sun, Beilin Ye, Haidi Wang, Xueyuan Liu, Chao Zhang, Feng Zhang, Kai-Ming Ho, Nan Wang
Physical Review B, 2019, 100 (17), 174101.
DOI: 10.1103/PhysRevB.100.174101

Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics

Julia Westermayr, Michael Gastegger, Philipp Marquetand
Journal of Physical Chemistry Letters, 2020, 11 (10), 3828–3834.
DOI: 10.1021/acs.jpclett.0c00527

Machine Learning and Excited-State Molecular Dynamics

Julia Westermayr, Philipp Marquetand
Machine Learning: Science and Technology, 2020, 1 (4), 043001.
DOI: 10/gksxpp

Atom-Density Representations for Machine Learning

Michael J. Willatt, Flix Musil, Michele Ceriotti
Journal of Chemical Physics, 2019, 150 (15), 154110.
DOI: 10.1063/1.5090481

Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements

Michael J. Willatt, Félix Musil, Michele Ceriotti
Physical Chemistry Chemical Physics, 2018, 20 (47), 29661–29668.
DOI: 10/gfz26d

Targeted Free Energy Estimation via Learned Mappings

Peter Wirnsberger, Andrew J. Ballard, George Papamakarios, Stuart Abercrombie, Sebastien Racaniere, Alexander Pritzel, Danilo Jimenez Rezende, Charles Blundell
Journal of Chemical Physics, 2020, 153 (14), 144112.
DOI: 10.1063/5.0018903

Active Learning Approach to Optimization of Experimental Control

Y Wu, Z Meng, K Wen, C Mi, Zhang J
iopscience.iop.org.

Deep Learning of Accurate Force Field of Ferroelectric HfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Physical Review B, 2021, 103 (2), 024108.
DOI: 10.1103/PhysRevB.103.024108

Deep Learning of Accurate Force Field of Ferroelectric HfO2

Jing Wu, Yuzhi Zhang, Linfeng Zhang, Shi Liu
Physical Review B, 2021, 103 (2), 024108.
DOI: 10.1103/PhysRevB.103.024108

Modeling of Metal Nanoparticles: Development of Neural-Network Interatomic Potential Inspired by Features of the Modified Embedded-Atom Method

Feifeng Wu, Hang Min, Yanwei Wen, Rong Chen, Yunkun Zhao, Mike Ford, Bin Shan
Physical Review B, 2020, 102 (14), 144107.
DOI: 10.1103/PhysRevB.102.144107

High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity

Yi Xia, Vinay Hegde, Koushik Pal, Xia Hua, Dale Gaines, Shane Patel, Jiangang He, Muratahan Aykol, Chris Wolverton
Physical Review X, 2020, 10 (4), 041029.
DOI: 10.1103/PhysRevX.10.041029

Ab-Initio Study of Interacting Fermions at Finite Temperature with Neural Canonical Transformation

Hao Xie, Linfeng Zhang, Lei Wang
arxiv.org, 2021.

Bayesian Force Fields from Active Learning for Simulation of Inter-Dimensional Transformation of Stanene

Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, Boris Kozinsky
Npj Computational Materials, 2021, 7 (1), 40.
DOI: 10.1038/s41524-021-00510-y

Graph Dynamical Networks for Unsupervised Learning of Atomic Scale Dynamics in Materials

Tian Xie, Arthur France-Lanord, Yanming Wang, Yang Shao-Horn, Jeffrey C. Grossman
Nature Communications, 2019, 10, 2667.
DOI: 10.1038/s41467-019-10663-6

Automated Construction of Neural Network Potential Energy Surface: The Enhanced Self-Organizing Incremental Neural Network Deep Potential Method

Mingyuan Xu, Tong Zhu, John Z H Zhang
, 18.

Automatically Constructed Neural Network Potentials for Molecular Dynamics Simulation of Zinc Proteins

Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Frontiers in Chemistry, 2021, 9, 692200.
DOI: 10.3389/fchem.2021.692200

A Deep-Learning Potential for Crystalline and Amorphous Li-Si Alloys

Nan Xu, Yao Shi, Yi He, Qing Shao
Journal of Physical Chemistry C, 2020, 124 (30), 16278–16288.
DOI: 10.1021/acs.jpcc.0c03333

Ab Initio Molecular Dynamics Simulation of Zinc Metalloproteins with Enhanced Self-Organizing Incremental High Dimensional Neural Network

Mingyuan Xu, Tong Zhu, John Z H Zhang
, 27.

Isotope Effects in Molecular Structures and Electronic Properties of Liquid Water via Deep Potential Molecular Dynamics Based on the SCAN Functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Physical Review B, 2020, 102 (21), 214113.
DOI: 10.1103/PhysRevB.102.214113

Isotope Effects in Molecular Structures and Electronic Properties of Liquid Water via Deep Potential Molecular Dynamics Based on the SCAN Functional

Jianhang Xu, Chunyi Zhang, Linfeng Zhang, Mohan Chen, Biswajit Santra, Xifan Wu
Physical Review B, 2020, 102 (21), 214113.
DOI: 10.1103/PhysRevB.102.214113

Molecular Dynamics Simulation of Zinc Ion in Water with an Ab Initio Based Neural Network Potential

Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Journal of Physical Chemistry A, 2019, 123 (30), 6587–6595.
DOI: 10.1021/acs.jpca.9b04087

De Novo Molecule Design through Molecular Generative Model Conditioned by 3D Information of Protein Binding Sites

Mingyuan Xu, Ting Ran, Hongming Chen
, 25.

Optimizing Training Data Set for the Machine Learning Potential of Li-Si Alloys via Structural Similarity-Based Screening

Nan Xu, Chen Li, Yao Shi, Qing Shao, Yi He
arxiv.org, 2021.

Perspective on Computational Reaction Prediction Using Machine Learning Methods in Heterogeneous Catalysis

Jiayan Xu, Xiao-Ming Cao, P. Hu
Physical Chemistry Chemical Physics, 2021, 23 (19), 11155–11179.
DOI: 10.1039/d1cp01349a

Using Metadynamics to Build Neural Network Potentials for Reactive Events: The Case of Urea Decomposition in Water

M Yang, L Bonati, D Polino, Parrinello M
Elsevier, 2021.

Construction of a Neural Network Energy Function for Protein Physics

Huan Yang, Zhaoping Xiong, Francesco Zonta
2021.
DOI: 10.1101/2021.04.26.441401

Role of Water in the Reaction Mechanism and Endo/Exo Selectivity of 1,3-Dipolar Cycloadditions Elucidated by Quantum Chemistry and Machine Learning

Xin Yang, Jun Zou, Yifei Wang, Ying Xue, Shengyong Yang
Chemistry-a European Journal, 2019, 25 (35), 8289–8303.
DOI: 10.1002/chem.201900617

Active Learning Algorithm for Computational Physics

J Yao, Y Wu, J Koo, B Yan, Zhai H
APS, 2020, 2 (1), 13287.
DOI: 10.1103/physrevresearch.2.013287

Nuclear Quantum Effect and Its Temperature Dependence in Liquid Water from Random Phase Approximation via Artificial Neural Network

Yi Yao, Yosuke Kanai
The Journal of Physical Chemistry Letters, 2021, 12 (27), 6354–6362.
DOI: 10/gk5v27

Atomic Energy Mapping of Neural Network Potential

Dongsun Yoo, Kyuhyun Lee, Wonseok Jeong, Dongheon Lee, Satoshi Watanabe, Seungwu Han
Physical Review Materials, 2019, 3 (9), 093802.
DOI: 10.1103/PhysRevMaterials.3.093802

A Transferable Active-Learning Strategy for Reactive Molecular Force Fields

Tom A. Young, Tristan Johnston-Wood, Volker L. Deringer, Fernanda Duarte
Chemical Science, 2021.
DOI: 10.1039/d1sc01825f

When Do Short-Range Atomistic Machine-Learning Models Fall Short?

Shuwen Yue, Maria Carolina Muniz, Marcos F. Calegari Andrade, Linfeng Zhang, Roberto Car, Athanassios Z. Panagiotopoulos
The Journal of Chemical Physics, 2021, 154 (3), 034111.
DOI: 10/gkcq6f

Explore the Chemical Space of Linear Alkanes Pyrolysis via Deep Potential Generator

J Zeng, L Zhang, H Wang, T Zhu
2020.

Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution

J Zeng, TJ Giese, Ş Ekesan, DM York
2021.

Complex Reaction Processes in Combustion Unraveled by Neural Network-Based Molecular Dynamics Simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Nature Communications, 2020, 11 (1), 5713.
DOI: 10.1038/s41467-020-19497-z

Complex Reaction Processes in Combustion Unraveled by Neural Network-Based Molecular Dynamics Simulation

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z. H. Zhang
Nature Communications, 2020, 11 (1), 5713.
DOI: 10.1038/s41467-020-19497-z

Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator

Jinzhe Zeng, Linfeng Zhang, Han Wang, Tong Zhu
Energy \& Fuels, 2021, 35 (1), 762–769.
DOI: 10.1021/acs.energyfuels.0c03211

Neural Network Based in Silico Simulation of Combustion Reactions

Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John ZH Zhang
arxiv.org, 2019.

Deep Density: Circumventing the Kohn-Sham Equations via Symmetry Preserving Neural Networks

Leonardo Zepeda-Núñez, Yixiao Chen, Jiefu Zhang, Weile Jia, Linfeng Zhang, Lin Lin
Elsevier, 2019.

Active Learning of Many-Body Configuration Space: Application to the Cs+-Water MB-Nrg Potential Energy Function as a Case Study

Yaoguang Zhai, Alessandro Caruso, Sicun Gao, Francesco Paesani
Journal of Chemical Physics, 2020, 152 (14), 144103.
DOI: 10.1063/5.0002162

BubbleNet: Inferring Micro-Bubble Dynamics with Semi-Physics-Informed Deep Learning

Hanfeng Zhai, Guohui Hu
2021.

Machine Learning for Multi-Scale Molecular Modeling: Theories, Algorithms, and Applications

L Zhang
2020.

Accelerating Atomistic Simulations with Piecewise Machine-Learned Ab Initio Potentials at a Classical Force Field-like Cost

Yaolong Zhang, Ce Hu, Bin Jiang
Physical Chemistry Chemical Physics, 2021, 23 (3), 1815–1821.
DOI: 10.1039/d0cp05089j

Active Learning of Uniformly Accurate Interatomic Potentials for Materials Simulation

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, Weinan E
Physical Review Materials, 2019, 3 (2), 023804.
DOI: 10.1103/PhysRevMaterials.3.023804

Adaptive Coupling of a Deep Neural Network Potential to a Classical Force Field

Linfeng Zhang, Han Wang, Weinan E
The Journal of chemical physics, 2018, 149 (15), 154107.
DOI: 10.1063/1.5042714

Anomalous Phase Separation and Hidden Coarsening of Super-Clusters in the Falicov-Kimball Model

Sheng Zhang, Puhan Zhang, Gia-Wei Chern
2021.

Arrested Phase Separation in Double-Exchange Models: Machine-Learning Enabled Large-Scale Simulation

Puhan Zhang, Gia-Wei Chern
2021.

Bridging the Gap between Direct Dynamics and Globally Accurate Reactive Potential Energy Surfaces Using Neural Networks

Yaolong Zhang, Xueyao Zhou, Bin Jiang
Journal of Physical Chemistry Letters, 2019, 10 (6), 1185–1191.
DOI: 10.1021/acs.jpclett.9b00085

Crystallization of the P3Sn4 Phase upon Cooling P2Sn5 Liquid by Molecular Dynamics Simulation Using a Machine Learning Interatomic Potential

Chao Zhang, Yang Sun, Hai-Di Wang, Feng Zhang, Tong-Qi Wen, Kai-Ming Ho, Cai-Zhuang Wang
Journal of Physical Chemistry C, 2021, 125 (5), 3127–3133.
DOI: 10.1021/acs.jpcc.0c08873

DeePCG: Constructing Coarse-Grained Models via Deep Neural Networks

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E. Weinan
2018, 149 (3).
DOI: 10.1063/1.5027645

Deep Neural Network for the Dielectric Response of Insulators

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, E. Weinan, Roberto Car
Physical Review B, 2020, 102 (4), 041121.
DOI: 10.1103/PhysRevB.102.041121

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, E. Weinan
Physical Review Letters, 2018, 120 (14), 143001.
DOI: 10.1103/PhysRevLett.120.143001

DP-GEN: A Concurrent Learning Platform for the Generation of Reliable Deep Learning Based Potential Energy Models

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, E. Weinan
Computer Physics Communications, 2020, 253, 107206.
DOI: 10.1016/j.cpc.2020.107206

Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties

Yaolong Zhang, Sheng Ye, Jinxiao Zhang, Ce Hu, Jun Jiang, Bin Jiang
The Journal of Physical Chemistry B, 2020, 124 (33), 7284–7290.
DOI: 10.1021/acs.jpcb.0c06926

Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation

Yaolong Zhang, Ce Hu, Bin Jiang
Journal of Physical Chemistry Letters, 2019, 10 (17), 4962–4967.
DOI: 10.1021/acs.jpclett.9b02037

Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation

Yaolong Zhang, Ce Hu, Bin Jiang
Journal of Physical Chemistry Letters, 2019, 10 (17), 4962–4967.
DOI: 10.1021/acs.jpclett.9b02037

End-to-End Symmetry Preserving Inter-Atomic Potential Energy Model for Finite and Extended Systems

Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, Weinan E
2018.
DOI: arXiv:1805.09003

Global Optimization of Chemical Cluster Structures: Methods, Applications, and Challenges

Jun Zhang, Vassiliki-Alexandra Glezakou
International Journal of Quantum Chemistry, 2021, 121 (7), e26553.
DOI: 10.1002/qua.26553

Isotope Effects in X-Ray Absorption Spectra of Liquid Water

Chunyi Zhang, Linfeng Zhang, Jianhang Xu, Fujie Tang, Biswajit Santra, Xifan Wu
Physical Review B, 2020, 102 (11), 115155.
DOI: 10.1103/PhysRevB.102.115155

A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks

Yaoyu Zhang, Tao Luo, Zheng Ma, Zhi-Qin John Xu
Chinese Physics Letters, 2021, 38 (3), 038701.
DOI: 10.1088/0256-307X/38/3/038701

Machine Learning Dynamics of Phase Separation in Correlated Electron Magnets

Puhan Zhang, Preetha Saha, Gia-Wei Chern
2020.

Molecular CT: Unifying Geometry and Representation Learning for Molecules at Different Scales

Jun Zhang, Yaqiang Zhou, Yao-Kun Lei, Yi Isaac Yang, Yi Qin Gao
, 14.

Monge-Amp\$\textbackslash backslash\$ere Flow for Generative Modeling

Linfeng Zhang, Lei Wang
2018.

A Perspective on Deep Learning for Molecular Modeling and Simulations

Jun Zhang, Yao-Kun Lei, Zhen hZang, Junhan Chang, Maodong Li, Xu Han, Lijiang Yang, Yi Isaac Yang, Yi Qin Gao
Journal of Physical Chemistry A, 2020, 124 (34), 6745–6763.
DOI: 10.1021/acs.jpca.0c04473

Phase Diagram of a Deep Potential Water Model

Linfeng Zhang, Han Wang, Roberto Car, E. Weinan
Physical Review Letters, 2021, 126 (23), 236001.
DOI: 10.1103/PhysRevLett.126.236001

Reinforced Dynamics for Enhanced Sampling in Large Atomic and Molecular Systems

Linfeng Zhang, Han Wang, Weinan E
The Journal of chemical physics, 2018, 148 (12), 124113.
DOI: 10.1063/1.5019675

Reinforcement Learning for Multi-Scale Molecular Modeling

Jun Zhang, Yao-Kun Lei, Yi Isaac Yang, Yi Qin Gao
, 26.

A Type of Generalization Error Induced by Initialization in Deep Neural Networks

Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, Zheng Ma
, 21.

Warm Dense Matter Simulation via Electron Temperature Dependent Deep Potential Molecular Dynamics

Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, Mohan Chen
Physics of Plasmas, 2020, 27 (12), 122704.
DOI: 10.1063/5.0023265

Learning the Physics of Pattern Formation from Images

Hongbo Zhao, Brian D. Storey, Richard D. Braatz, Martin Z. Bazant
Physical Review Letters, 2020, 124 (6), 060201.
DOI: 10.1103/PhysRevLett.124.060201

Theoretical Prediction on the Redox Potentials of Rare-Earth Ions by Deep Potentials

Jia Zhao, Wenshuo Liang, Guimin Lu
Ionics, 2021, 27 (5), 2079–2088.
DOI: 10/gmfwvw

Retention and Recycling of Deuterium in Liquid Lithium-Tin Slab Studied by First-Principles Molecular Dynamics

Daye Zheng, Zhen-Xiong Shen, Mohan Chen, Xinguo Ren, Lixin He
Journal of Nuclear Materials, 2021, 543, 152542.
DOI: 10.1016/j.jnucmat.2020.152542

Atomic-State-Dependent Screening Model for Hot and Warm Dense Plasmas

Fuyang Zhou, Yizhi Qu, Junwen Gao, Yulong Ma, Yong Wu, Jianguo Wang
Communications Physics, 2021, 4 (1), 148.
DOI: 10.1038/s42005-021-00652-x

Frame-Independent Vector-Cloud Neural Network for Nonlocal Constitutive Modelling on Arbitrary Grids

Xu-Hui Zhou, Jiequn Han, Heng Xiao
2021.

Structure and Dynamics of Supercooled Liquid Ge \textsubscript2 Sb \textsubscript2 Te \textsubscript5 from Machine‐Learning‐Driven Simulations

Yu-Xing Zhou, Han-Yi Zhang, Volker L. Deringer, Wei Zhang
physica status solidi (RRL) – Rapid Research Letters, 2021, 15 (3), 2000403.
DOI: 10/gmf6g6

Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties*

Lin Zhuan, Qijun Ye, Ding Pan, Xin-Zheng Li
Chinese Physics Letters, 2020, 37 (4), 043101.
DOI: 10.1088/0256-307X/37/4/043101

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence

Tetiana Zubatiuk, Olexandr Isayev
Accounts of Chemical Research, 2021, 54 (7), 1575–1585.
DOI: 10.1021/acs.accounts.0c00868

Machine Learned Hückel Theory: Interfacing Physics and Deep Neural Networks

Tetiana Zubatiuk, Benjamin Nebgen, Nicholas Lubbers, Justin S. Smith, Roman Zubatyuk, Guoqing Zhou, Christopher Koh, Kipton Barros, Olexandr Isayev, Sergei Tretiak
The Journal of Chemical Physics, 2021, 154 (24), 244108.
DOI: 10.1063/5.0052857

Performance and Cost Assessment of Machine Learning Interatomic Potentials

Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Joerg Behler, Gabor Csanyi, Alexander Shapeev, Aidan P. Thompson, Mitchell A. Wood, Shyue Ping Ong
Journal of Physical Chemistry A, 2020, 124 (4), 731–745.
DOI: 10.1021/acs.jpca.9b08723

Modified Embedded-Atom Method Potentials for the Plasticity and Fracture Behaviors of Unary Fcc Metals

ZH Aitken, V Sorkin, ZG Yu, S Chen, Z Wu, YW Zhang - Physical Review B, undefined 2021
APS.

Machine Learning and Computational Mathematics

E Weinan - arXiv preprint ArXiv:2009.14596, undefined 2020
arxiv.org, 1920.

Research on Microstructure and Physical Properties of Molten Carbonate Salt Based on Machine Learning

YANG Bo, L. U. Guimin
华东理工大学学报 (自然科学版), 2021, 1–11.

Machine Learning on Neutron and X-Ray Scattering and Spectroscopies

Zhantao Chen, Nina Andrejevic, Nathan C. Drucker, Thanh Nguyen, R. Patrick Xian, Tess Smidt, Yao Wang, Ralph Ernstorfer, D. Alan Tennant, Maria Chan, Mingda Li
Chemical Physics Reviews, 2021, 2 (3), 031301.
DOI: 10.1063/5.0049111

Deep Learning for Nonadiabatic Excited-State Dynamics

Wen-Kai Chen, Xiang-Yang Liu, Wei-Hai Fang, Pavlo O. Dral, Ganglong Cui
The journal of physical chemistry letters, 2018, 9 (23), 6702–6708.
DOI: 10.1021/acs.jpclett.8b03026

Building Machine Learning Force Fields of Proteins with Fragment-Based Approach and Transfer Learning

Zheng Cheng, Jiahui Du, Lei Zhang, Jing Ma, Wei Li, Shuhua Li
2021.

The Study of the Optical Phonon Frequency of 3C-SiC by Molecular Dynamics Simulations with Deep Neural Network Potential

Wei Chen, Liang-Sheng Li
Journal of Applied Physics, 2021, 129 (24), 244104.
DOI: 10.1063/5.0049464

On the Role of Gradients for Machine Learning of Molecular Energies and Forces

Anders S. Christensen, O. Anatole von Lilienfeld
Machine Learning: Science and Technology, 2020, 1 (4), 045018.
DOI: 10.1088/2632-2153/abba6f

Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: Ab Initio Nonadiabatic Molecular Dynamics with Machine Learning

Weibin Chu, Wissam A. Saidi, Oleg V. Prezhdo
ACS nano, 2020, 14 (8), 10608–10615.
DOI: 10.1021/acsnano.0c04736

Implementing a Neural Network Interatomic Model with Performance Portability for Emerging Exascale Architectures

Saaketh Desai, Samuel Temple Reeve, James F. Belak
2020.

Nonadiabatic Excited-State Dynamics with Machine Learning

Pavlo O. Dral, Mario Barbatti, Walter Thiel
The journal of physical chemistry letters, 2018, 9 (19), 5660–5663.
DOI: 10.1021/acs.jpclett.8b02469

Machine Learning and Computational Mathematics

Weinan E
2020.

Deterministic and Statistical Approaches to Quantum Chemistry

Alberto Fabrizio
2020.

The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety

Donal P. Finegan, Juner Zhu, Xuning Feng, Matt Keyser, Marcus Ulmefors, Wei Li, Martin Z. Bazant, Samuel J. Cooper
Joule, 2020.

Heat and Charge Transport in H 2 O at Ice-Giant Conditions from Ab Initio Molecular Dynamics Simulations

Federico Grasselli, Lars Stixrude, Stefano Baroni
Nature communications, 2020, 11 (1), 1–7.
DOI: 10.1038/s41467-020-17275-5

Transferable Machine-Learning Model of the Electron Density

Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, David M. Wilkins, Clemence Corminboeuf, Michele Ceriotti
ACS central science, 2018, 5 (1), 57–64.
DOI: 10.1021/acscentsci.8b00551

Accuracy, Transferability, and Efficiency of Coarse-Grained Models of Molecular Liquids

M. G. Guenza, M. Dinpajooh, J. McCarty, I. Y. Lyubimov
The Journal of Physical Chemistry B, 2018, 122 (45), 10257–10278.
DOI: 10.1021/acs.jpcb.8b06687

High-Throughput Production of Force-Fields for Solid-State Electrolyte Materials

Ryo Kobayashi, Yasuhiro Miyaji, Koki Nakano, Masanobu Nakayama
APL Materials, 2020, 8 (8), 081111.
DOI: 10.1063/5.0015373

Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based \$ Ab \$\$ Initio \$ Molecular Dynamics II: Extensions to the Isobaric-Isoenthalpic and Isobaric-Isothermal Ensembles

Hsin-Yu Ko, Biswajit Santra, Robert A. DiStasio Jr
2020.

Molecular Dynamics Simulations of Molten Magnesium Chloride Using Machine‐Learning‐Based Deep Potential

W Liang, G Lu, J Yu
Wiley Online Library, 2020.

A Deep Neural Network Interatomic Potential for Studying Thermal Conductivity of β-Ga2O3

Ruiyang Li, Zeyu Liu, Andrew Rohskopf, Kiarash Gordiz, Asegun Henry, Eungkyu Lee, Tengfei Luo
Applied Physics Letters, 2020, 117 (15), 152102.
DOI: 10.1063/5.0025051

Effects of Density and Composition on the Properties of Amorphous Alumina: A High-Dimensional Neural Network Potential Study

Wenwen Li, Yasunobu Ando, Satoshi Watanabe
The Journal of Chemical Physics, 2020, 153 (16), 164119.
DOI: 10.1063/5.0026289

Automatically Growing Global Reactive Neural Network Potential Energy Surfaces: A Trajectory-Free Active Learning Strategy

Qidong Lin, Yaolong Zhang, Bin Zhao, Bin Jiang
2020, 152 (15).
DOI: 10.1063/5.0004944

Active Learning for Robust, High-Complexity Reactive Atomistic Simulations

Rebecca K. RK Lindsey, LE Laurence E. Fried, N Goldman - The Journal of Chemical …, undefined 2020, Nir Goldman, Sorin Bastea
2020, 153 (13).
DOI: 10.1063/5.0021965

Future Directions of Chemical Theory and Computation

Yuyuan Lu, Geng Deng, Zhigang Shuai
Pure and Applied Chemistry, 2021.
DOI: 10.1515/pac-2020-1006

A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions

Yulong Lu, Jianfeng Lu
2020.

Understanding Simple Liquids through Statistical and Deep Learning Approaches

A. Moradzadeh, N. R. Aluru
The Journal of Chemical Physics, 2021, 154 (20), 204503.
DOI: 10.1063/5.0046226

Atomistic Structure Learning Algorithm with Surrogate Energy Model Relaxation

HL Henrik Lund Mortensen, Søren Ager SA Meldgaard, Malthe Kjær Bisbo, Mads Peter V. Christiansen, Bjørk Hammer, MK Bisbo - Physical Review B, undefined 2020
2020, 102 (7).
DOI: 10.1103/physrevb.102.075427

Machine Learning in Nano-Scale Biomedical Engineering

BPN Behler-Parrinello Network
.

Ring Polymer Molecular Dynamics and Active Learning of Moment Tensor Potential for Gas-Phase Barrierless Reactions: Application to S + H2

IS Ivan S. Novikov, Alexander V. Shapeev, Yury V. Suleimanov, AV Shapeev - The Journal of chemical …, undefined 2019
2019, 151 (22).
DOI: 10.1063/1.5127561

Automated Calculation of Thermal Rate Coefficients Using Ring Polymer Molecular Dynamics and Machine-Learning Interatomic Potentials with Active Learning

Ivan S. Novikov, Yury V. Suleimanov, Alexander V. Shapeev
Physical Chemistry Chemical Physics, 2018, 20 (46), 29503–29512.
DOI: 10.1039/C8CP06037A

Modeling H 2 O/Rutile-TiO 2 (110) Potential Energy Surfaces with Deep Networks

Stefan Oehmcke, Thomas Teusch, Thorben Petersen, Thorsten Klüner, Oliver Kramer
2020 International Joint Conference on Neural Networks (IJCNN), 2020, 1–7.
DOI: 10.1109/IJCNN48605.2020.9207275

Deep Learning Interatomic Potential for Simulation of Radiation Damage in Vanadium-Rich V-Cr-Ti Ternary Alloys

H. S. M. Phuong, M. D. Starostenkov, N. T. H. Trung
Эволюция Дефектных Структур в Конденсированных Средах, 2020, 141–142.

Development of a General-Purpose Machine-Learning Interatomic Potential for Aluminum by the Physically Informed Neural Network Method

GPP P.Purja Pun, V. Yamakov, J. Hickman, E. H. Glaessgen, Y. Mishin, EH Glaessgen - Physical Review …, undefined 2020
2020, 4 (11).
DOI: 10.1103/physrevmaterials.4.113807

Four Generations of High-Dimensional Neural Network Potentials

J Behler - Chemical Reviews, undefined 2021
ACS Publications.

Representing Local Atomic Environment Using Descriptors Based on Local Correlations

Amit Samanta
The Journal of chemical physics, 2018, 149 (24), 244102.
DOI: 10.1063/1.5055772

Unsupervised Learning of Atomic Environments from Simple Features

WF Reinhart - Computational Materials Science, undefined 2021
Elsevier.

A Systematic Approach to Generating Accurate Neural Network Potentials: The Case of Carbon

Y Shaidu, E Küçükbenli, R Lot, F Pellegrini
nature.com.

Elinvar Effect in β-Ti Simulated by on-the-Fly Trained Moment Tensor Potential

AV Shapeev, EV Podryabinkin, K Gubaev
iopscience.iop.org.

Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials

Andreas Singraber, Jörg Behler, Christoph Dellago
Journal of chemical theory and computation, 2019, 15 (3), 1827–1840.
DOI: 10.1021/acs.jctc.8b00770

Machine-Learned Interatomic Potentials by Active Learning: Amorphous and Liquid Hafnium Dioxide

G Sivaraman, AN Krishnamoorthy, M Baur - npj Computational …, undefined 2020
nature.com.

Automated Discovery of a Robust Interatomic Potential for Aluminum

JS Smith, B Nebgen, N Mathew, J Chen
nature.com.

Efficient Estimation of Material Property Curves and Surfaces via Active Learning

Yuan Tian, Dezhen Xue, Ruihao Yuan, Yumei Zhou, Xiangdong Ding, Jun Sun, Turab Lookman, J Sun - Physical Review …, undefined 2021
2021, 5 (1).
DOI: 10.1103/physrevmaterials.5.013802

Generalizable Protein Interface Prediction with End-to-End Learning

R. J. Townshend, Rishi Bedi, Ron O. Dror
2018.

Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks

Masashi Tsubaki, Teruyasu Mizoguchi
The journal of physical chemistry letters, 2018, 9 (19), 5733–5741.
DOI: 10.1021/acs.jpclett.8b01837

Towards Modeling Spatiotemporal Processes in Metal–Organic Frameworks

Veronique Van Speybroeck, Sander Vandenhaute, Alexander EJ Hoffman, Sven MJ Rogge
Trends in Chemistry, 2021.
DOI: 10.1016/j.trechm.2021.04.003

Uncertainty Quantification in Molecular Simulations with Dropout Neural Network Potentials

M Wen, EB Tadmor
nature.com, 2020.

Deep Learning for UV Absorption Spectra with SchNarc: First Steps toward Transferability in Chemical Compound Space

Julia Westermayr, Philipp Marquetand
The Journal of Chemical Physics, 2020, 153 (15), 154112.
DOI: 10.1063/5.0021915

Machine Learning for Nonadiabatic Molecular Dynamics

Julia Westermayr, Philipp Marquetand
Machine Learning in Chemistry, 2020, 17, 76.
DOI: 10.1039/9781839160233-00076

A Data-Driven Construction of the Periodic Table of the Elements

Michael J. Willatt, Félix Musil, Michele Ceriotti
2018.

Theory and Practice of Atom-Density Representations for Machine Learning

Michael J. Willatt, Félix Musil, Michele Ceriotti
arXiv preprint, 2018.

Modeling and Predicting Responses of Magnetoelectric Materials

Ben Xu, Ce-Wen Nan
MRS Bulletin, 2018, 43 (11), 829–833.
DOI: 10.1557/mrs.2018.259

Theoretical Investigation of Halide Perovskites for Solar Cell and Optoelectronic Applications

Jingxiu Yang, Peng Zhang, Jianping Wang, Su Huai Wei
Chinese Physics B, 2020, 29 (10).
DOI: 10.1088/1674-1056/abb3f6

OnsagerNet: Learning Stable and Interpretable Dynamics Using a Generalized Onsager Principle

Haijun Yu, Xinyuan Tian, Q Li - arXiv preprint ArXiv:2009.02327, undefined 2020, Weinan E, Qianxiao Li
arxiv.org, 2020.

Exploration of Transferable and Uniformly Accurate Neural Network Interatomic Potentials Using Optimal Experimental Design

V Zaverkin, J Kästner
iopscience.iop.org, 2021.

Discovery and Design of Soft Polymeric Bio-Inspired Materials with Multiscale Simulations and Artificial Intelligence

Chenxi Zhai, Tianjiao Li, Haoyuan Shi, Jingjie Yeo
Journal of Materials Chemistry B, 2020, 8 (31), 6562–6587.
DOI: 10.1039/D0TB00896F

Inferring Micro-Bubble Dynamics with Physics-Informed Deep Learning

Hanfeng Zhai, Guohui Hu
2021.

Arrested Phase Separation in Double-Exchange Models: Machine-Learning Enabled Large-Scale Simulation

Puhan Zhang, Gia-Wei Chern
2021.

Physically Inspired Atom-Centered Symmetry Functions for the Construction of High Dimensional Neural Network Potential Energy Surfaces

Kangyu Zhang, Lichang Yin, Gang Liu
Computational Materials Science, 2021, 186, 110071.
DOI: 10.1016/j.commatsci.2020.110071

Adaptive Genetic Algorithm for Structure Prediction and Application to Magnetic Materials

Xin Zhao, Shunqing Wu, Manh Cuong Nguyen, Kai-Ming Ho, Cai-Zhuang Wang
Handbook of Materials Modeling: Applications: Current and Emerging Materials, 2020, 2757–2776.
DOI: 10.1007/978-3-319-44680-6_73

0%
\ No newline at end of file diff --git a/papers/reviews.html b/papers/reviews.html index 7d845ad..ec20306 100644 --- a/papers/reviews.html +++ b/papers/reviews.html @@ -1 +1 @@ -Reviews | DeepModeling

DeepModeling

Define the future of scientific computing together

Reviews

Discovery and Implementation of Fast, Accurate and Transferable Many-Body Interatomic Potentials

Adarsh Balasubramanian
2019.

Four Generations of High-Dimensional Neural Network Potentials

Jörg Behler
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.0c00868

Dynamical Processes in the Condensed Phase: Methods and Models

Matthew Ralph Carbone
2021.

Machine Learning and the Physical Sciences

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-Maranto, Lenka Zdeborova
Reviews of Modern Physics, 2019, 91 (4), 045002.
DOI: 10.1103/RevModPhys.91.045002

Autonomous Discovery in the Chemical Sciences Part I: Progress

Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie-International Edition, 2020, 59 (51), 22858–22893.
DOI: 10.1002/anie.201909987

Designing Models Using Machine Learning: One-Body Reduced Density Matrices and Spectra

Andrea Costamagna
2020.

Interfacial Potentials in Ion Solvation

Carrie Conor Doyle
2020.

Molecular Excited States through a Machine Learning Lens

Pavlo O. Dral, Mario Barbatti
Nature Reviews Chemistry, 2021, 5 (6), 388–405.
DOI: 10.1038/s41570-021-00278-1

Characterizing Magnetic Skyrmions at Their Fundamental Length and Time Scales

Peter Fischer, Sujoy Roy
Magnetic Skyrmions and Their Applications, 2021, 55–97.

Unsupervised Learning Methods for Molecular Simulation Data

Aldo Glielmo, Brooke E. Husic, Alex Rodriguez, Cecilia Clementi, Frank Noé, Alessandro Laio
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.0c01195

The Structure and Dynamics of Materials Using Machine Learning

Mário Rui Gonçalves Marques
2020.

Machine-Learning-Assisted Modeling

Sarah Greenstreet
Physics Today, 2021, 74 (7), 42–47.
DOI: 10.1063/PT.3.4794

Atomic-Scale Representation and Statistical Learning of Tensorial Properties

Andrea Grisafi, David M. Wilkins, Michael J. Willatt, Michele Ceriotti
Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions, 2019, 1–21.

Adaptive Iron-Based Magnetic Nanomaterials of High Performance for Biomedical Applications

Ning Gu, Zuoheng Zhang, Yan Li
Nano Research, 2021.
DOI: 10.1007/s12274-021-3546-1

Deep Learning for Large-Scale Molecular Dynamics and High-Dimensional Partial Differential Equations

Jiequn Han
2018.

Machine Learning for Alloys

Gus L. W. Hart, Tim Mueller, Cormac Toher, Stefano Curtarolo
Nature Reviews Materials, 2021.
DOI: 10.1038/s41578-021-00340-w

Characterizing Performance Improvement of GPUs

Dodi Heryadi, Scott Hampton
Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), 2019, 1–5.

Physics-Informed Machine Learning

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, Liu Yang
Nature Reviews Physics, 2021, 3 (6), 422–440.
DOI: 10.1038/s42254-021-00314-5

Neural Network Potentials: A Concise Overview of Methods

Emir Kocer, TW Tsz Wai Ko, Jörg Behler, J Behler
arxiv.org, 2021.

First-Principles Study on the Structural and Thermal Properties of Molecular Crystals and Liquids

Hsin-Yu Ko
2019.

FMO Interfaced with Molecular Dynamics Simulation

Yuto Komeiji, Takeshi Ishikawa
Recent Advances of the Fragment Molecular Orbital Method, 2021, 373–389.

Classical Molecular Dynamics Using Neural Network Representations of Potential Energy Surfaces

Andreas Godø Lefdalsnes
2019.

Modeling Electrified Metal/Water Interfaces from Ab Initio Molecular Dynamics: Structure and Helmholtz Capacitance

Jia-Bo Le, Jun Cheng
Current Opinion in Electrochemistry, 2021, 27, 100693.
DOI: 10/ghtqnk

Molecular Dynamics Study of Charged Nanomaterials: Electrostatics and Self-Assembly

Yaohua Li
2021.

Discovering and Understanding Materials through Computation

Steven G. Louie, Yang-Hao Chan, Felipe H. da Jornada, Zhenglu Li, Diana Y. Qiu
Nature Materials, 2021, 20 (6), 728–735.
DOI: 10.1038/s41563-021-01015-1

Future Directions of Chemical Theory and Computation

Yuyuan Lu, Geng Deng, Zhigang Shuai
Pure and Applied Chemistry, 2021.
DOI: 10.1515/pac-2020-1006

Integrating Machine Learning into Protein-Ligand Scoring Function Development

Jianing Lu
2020.

Development of a Machine Learning Potential for Nucleotides in Water

Riccardo Martina
, 57.

Machine Learning for Chemical Reactions

Markus Meuwly
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.1c00033

Strategies for the Construction of Machine-Learning Potentials for Accurate and Efficient Atomic-Scale Simulations

April M. Miksch, Tobias Morawietz, Johannes Kaestner, Alexander Urban, Nongnuch Artrith
Machine Learning-Science and Technology, 2021, 2 (3), 031001.
DOI: 10.1088/2632-2153/abfd96

Membrane Models for Molecular Simulations of Peripheral Membrane Proteins

Mahmoud Moqadam, Thibault Tubiana, Emmanuel E. Moutoussamy, Nathalie Reuter
Advances in Physics-X, 2021, 6 (1), 1932589.
DOI: 10.1080/23746149.2021.1932589

Machine Learning-Accelerated Quantum Mechanics-Based Atomistic Simulations for Industrial Applications

Tobias Morawietz, Nongnuch Artrith
Journal of Computer-Aided Molecular Design, 2021, 35 (4), 557–586.
DOI: 10.1007/s10822-020-00346-6

Physics-Inspired Structural Representations for Molecules and Materials

Felix Musil, Andrea Grisafi, Albert P. Bartók, Christoph Ortner, Gábor Csányi, Michele Ceriotti
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.1c00021

Computational Predictions of the Thermal Conductivity of Solids and Liquids

Marcello Puligheddu
2020.

RANDOM PHASE APPROXIMATION AND BEYOND: FROM THEORY TO REALISTIC MATERIALS

Dario Rocca
2020.

Theoretical Insights into the Surface Physics and Chemistry of Redox-Active Oxides

Roger Rousseau, Vassiliki-Alexandra Glezakou, Annabella Selloni
Nature Reviews Materials, 2020, 5 (6), 460–475.
DOI: 10.1038/s41578-020-0198-9

Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights

Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky, Klaus-Robert Müller, Alexandre Tkatchenko
Machine Learning Meets Quantum Physics, 2020, 277–307.

Interatomic Potential for Li-C Systems from Cluster Expansion to Artificial Neural Network Techniques

Yusuf Shaidu
2020.

Modelling Bulk Electrolytes and Electrolyte Interfaces with Atomistic Machine Learning

Yunqi Shao, Lisanne Knijff, Florian M. Dietrich, Kersti Hermansson, Chao Zhang
Batteries \& Supercaps, 2021, 4 (4), 585–595.
DOI: 10.1002/batt.202000262

Neural Network for the Prediction of Force Differences between an Amino Acid in Solution and Vacuum

Gopal Narayan Srivastava
2020.

Machine Learning Force Fields

Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T. Schütt, Alexandre Tkatchenko, Klaus-Robert Müller
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.0c01111

Challenges for Machine Learning Force Fields in Reproducing Potential Energy Surfaces of Flexible Molecules

Valentin Vassilev-Galindo, Gregory Fonseca, Igor Poltavsky, Alexandre Tkatchenko
Journal of Chemical Physics, 2021, 154 (9), 094119.
DOI: 10.1063/5.0038516

Force Field Development and Nanoreactor Chemistry

Lee-Ping Wang
Computational Approaches for Chemistry Under Extreme Conditions, 2019, 127–159.

Investigations of Water/Oxide Interfaces by Molecular Dynamics Simulations

Ruiyu Wang, Michael L. Klein, Vincenzo Carnevale, Eric Borguet
Wiley Interdisciplinary Reviews-Computational Molecular Science, 2021, e1537.
DOI: 10.1002/wcms.1537

Physics-Guided Deep Learning for Dynamical Systems: A Survey

Rui Wang
2021.

Integrating Machine Learning with Physics-Based Modeling

E Weinan, Jiequn Han, Zhang Linfeng
2020.

Machine Learning and Computational Mathematics

E. Weinan
Communications in Computational Physics, 2020, 28 (5), 1639–1670.
DOI: 10.4208/cicp.OA-2020-0185

Machine Learning for Electronically Excited States of Molecules

Julia Westermayr, Philipp Marquetand
Chemical Reviews, 2020.
DOI: 10.1021/acs.chemrev.0c00749

Integrating Physics-Based Modeling with Machine Learning: A Survey

J Willard, X Jia, S Xu, M Steinbach, V Kumar
arxiv.org, 2021.

Deep Learning Methods for the Design and Understanding of Solid Materials

Tian Xie
2020.

Perspective on Computational Reaction Prediction Using Machine Learning Methods in Heterogeneous Catalysis

Jiayan Xu, Xiao-Ming Cao, P. Hu
Physical Chemistry Chemical Physics, 2021, 23 (19), 11155–11179.
DOI: 10.1039/d1cp01349a

Recent Progress on Multiscale Modeling of Electrochemistry

Xiao‐Hui Yang, Yong‐Bin Zhuang, Jia‐Xin Zhu, Jia‐Bo Le, Jun Cheng
WIREs Computational Molecular Science, 2021.
DOI: 10.1002/wcms.1559

Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges

Huilin Ye, Weikang Xian, Ying Li
ACS omega, 2021, 6 (3), 1758–1772.
DOI: 10.1021/acsomega.0c05321

Machine Learning for Multi-Scale Molecular Modeling: Theories, Algorithms, and Applications

L Zhang
2020.

Global Optimization of Chemical Cluster Structures: Methods, Applications, and Challenges

Jun Zhang, Vassiliki-Alexandra Glezakou
International Journal of Quantum Chemistry, 2021, 121 (7), e26553.
DOI: 10.1002/qua.26553

Non-Contact Ultrasound

Xiang Zhang
2019.

0%
\ No newline at end of file +Reviews | DeepModeling

DeepModeling

Define the future of scientific computing together

Reviews

Discovery and Implementation of Fast, Accurate and Transferable Many-Body Interatomic Potentials

Adarsh Balasubramanian
2019.

Four Generations of High-Dimensional Neural Network Potentials

Jörg Behler
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.0c00868

Dynamical Processes in the Condensed Phase: Methods and Models

Matthew Ralph Carbone
2021.

Machine Learning and the Physical Sciences

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-Maranto, Lenka Zdeborova
Reviews of Modern Physics, 2019, 91 (4), 045002.
DOI: 10.1103/RevModPhys.91.045002

Autonomous Discovery in the Chemical Sciences Part I: Progress

Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen
Angewandte Chemie-International Edition, 2020, 59 (51), 22858–22893.
DOI: 10.1002/anie.201909987

Designing Models Using Machine Learning: One-Body Reduced Density Matrices and Spectra

Andrea Costamagna
2020.

Interfacial Potentials in Ion Solvation

Carrie Conor Doyle
2020.

Molecular Excited States through a Machine Learning Lens

Pavlo O. Dral, Mario Barbatti
Nature Reviews Chemistry, 2021, 5 (6), 388–405.
DOI: 10.1038/s41570-021-00278-1

Characterizing Magnetic Skyrmions at Their Fundamental Length and Time Scales

Peter Fischer, Sujoy Roy
Magnetic Skyrmions and Their Applications, 2021, 55–97.

Unsupervised Learning Methods for Molecular Simulation Data

Aldo Glielmo, Brooke E. Husic, Alex Rodriguez, Cecilia Clementi, Frank Noé, Alessandro Laio
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.0c01195

The Structure and Dynamics of Materials Using Machine Learning

Mário Rui Gonçalves Marques
2020.

Machine-Learning-Assisted Modeling

Sarah Greenstreet
Physics Today, 2021, 74 (7), 42–47.
DOI: 10.1063/PT.3.4794

Atomic-Scale Representation and Statistical Learning of Tensorial Properties

Andrea Grisafi, David M. Wilkins, Michael J. Willatt, Michele Ceriotti
Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions, 2019, 1–21.

Adaptive Iron-Based Magnetic Nanomaterials of High Performance for Biomedical Applications

Ning Gu, Zuoheng Zhang, Yan Li
Nano Research, 2021.
DOI: 10.1007/s12274-021-3546-1

Deep Learning for Large-Scale Molecular Dynamics and High-Dimensional Partial Differential Equations

Jiequn Han
2018.

Machine Learning for Alloys

Gus L. W. Hart, Tim Mueller, Cormac Toher, Stefano Curtarolo
Nature Reviews Materials, 2021.
DOI: 10.1038/s41578-021-00340-w

Characterizing Performance Improvement of GPUs

Dodi Heryadi, Scott Hampton
Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), 2019, 1–5.

Physics-Informed Machine Learning

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, Liu Yang
Nature Reviews Physics, 2021, 3 (6), 422–440.
DOI: 10.1038/s42254-021-00314-5

Neural Network Potentials: A Concise Overview of Methods

Emir Kocer, TW Tsz Wai Ko, Jörg Behler, J Behler
arxiv.org, 2021.

First-Principles Study on the Structural and Thermal Properties of Molecular Crystals and Liquids

Hsin-Yu Ko
2019.

FMO Interfaced with Molecular Dynamics Simulation

Yuto Komeiji, Takeshi Ishikawa
Recent Advances of the Fragment Molecular Orbital Method, 2021, 373–389.

Classical Molecular Dynamics Using Neural Network Representations of Potential Energy Surfaces

Andreas Godø Lefdalsnes
2019.

Modeling Electrified Metal/Water Interfaces from Ab Initio Molecular Dynamics: Structure and Helmholtz Capacitance

Jia-Bo Le, Jun Cheng
Current Opinion in Electrochemistry, 2021, 27, 100693.
DOI: 10/ghtqnk

Molecular Dynamics Study of Charged Nanomaterials: Electrostatics and Self-Assembly

Yaohua Li
2021.

Discovering and Understanding Materials through Computation

Steven G. Louie, Yang-Hao Chan, Felipe H. da Jornada, Zhenglu Li, Diana Y. Qiu
Nature Materials, 2021, 20 (6), 728–735.
DOI: 10.1038/s41563-021-01015-1

Future Directions of Chemical Theory and Computation

Yuyuan Lu, Geng Deng, Zhigang Shuai
Pure and Applied Chemistry, 2021.
DOI: 10.1515/pac-2020-1006

Integrating Machine Learning into Protein-Ligand Scoring Function Development

Jianing Lu
2020.

Development of a Machine Learning Potential for Nucleotides in Water

Riccardo Martina
, 57.

Machine Learning for Chemical Reactions

Markus Meuwly
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.1c00033

Strategies for the Construction of Machine-Learning Potentials for Accurate and Efficient Atomic-Scale Simulations

April M. Miksch, Tobias Morawietz, Johannes Kaestner, Alexander Urban, Nongnuch Artrith
Machine Learning-Science and Technology, 2021, 2 (3), 031001.
DOI: 10.1088/2632-2153/abfd96

Membrane Models for Molecular Simulations of Peripheral Membrane Proteins

Mahmoud Moqadam, Thibault Tubiana, Emmanuel E. Moutoussamy, Nathalie Reuter
Advances in Physics-X, 2021, 6 (1), 1932589.
DOI: 10.1080/23746149.2021.1932589

Machine Learning-Accelerated Quantum Mechanics-Based Atomistic Simulations for Industrial Applications

Tobias Morawietz, Nongnuch Artrith
Journal of Computer-Aided Molecular Design, 2021, 35 (4), 557–586.
DOI: 10.1007/s10822-020-00346-6

Physics-Inspired Structural Representations for Molecules and Materials

Felix Musil, Andrea Grisafi, Albert P. Bartók, Christoph Ortner, Gábor Csányi, Michele Ceriotti
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.1c00021

Computational Predictions of the Thermal Conductivity of Solids and Liquids

Marcello Puligheddu
2020.

RANDOM PHASE APPROXIMATION AND BEYOND: FROM THEORY TO REALISTIC MATERIALS

Dario Rocca
2020.

Theoretical Insights into the Surface Physics and Chemistry of Redox-Active Oxides

Roger Rousseau, Vassiliki-Alexandra Glezakou, Annabella Selloni
Nature Reviews Materials, 2020, 5 (6), 460–475.
DOI: 10.1038/s41578-020-0198-9

Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights

Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky, Klaus-Robert Müller, Alexandre Tkatchenko
Machine Learning Meets Quantum Physics, 2020, 277–307.

Interatomic Potential for Li-C Systems from Cluster Expansion to Artificial Neural Network Techniques

Yusuf Shaidu
2020.

Modelling Bulk Electrolytes and Electrolyte Interfaces with Atomistic Machine Learning

Yunqi Shao, Lisanne Knijff, Florian M. Dietrich, Kersti Hermansson, Chao Zhang
Batteries \& Supercaps, 2021, 4 (4), 585–595.
DOI: 10.1002/batt.202000262

Neural Network for the Prediction of Force Differences between an Amino Acid in Solution and Vacuum

Gopal Narayan Srivastava
2020.

Machine Learning Force Fields

Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T. Schütt, Alexandre Tkatchenko, Klaus-Robert Müller
Chemical Reviews, 2021.
DOI: 10.1021/acs.chemrev.0c01111

Challenges for Machine Learning Force Fields in Reproducing Potential Energy Surfaces of Flexible Molecules

Valentin Vassilev-Galindo, Gregory Fonseca, Igor Poltavsky, Alexandre Tkatchenko
Journal of Chemical Physics, 2021, 154 (9), 094119.
DOI: 10.1063/5.0038516

Force Field Development and Nanoreactor Chemistry

Lee-Ping Wang
Computational Approaches for Chemistry Under Extreme Conditions, 2019, 127–159.

Investigations of Water/Oxide Interfaces by Molecular Dynamics Simulations

Ruiyu Wang, Michael L. Klein, Vincenzo Carnevale, Eric Borguet
Wiley Interdisciplinary Reviews-Computational Molecular Science, 2021, e1537.
DOI: 10.1002/wcms.1537

Physics-Guided Deep Learning for Dynamical Systems: A Survey

Rui Wang
2021.

Integrating Machine Learning with Physics-Based Modeling

E Weinan, Jiequn Han, Zhang Linfeng
2020.

Machine Learning and Computational Mathematics

E. Weinan
Communications in Computational Physics, 2020, 28 (5), 1639–1670.
DOI: 10.4208/cicp.OA-2020-0185

Machine Learning for Electronically Excited States of Molecules

Julia Westermayr, Philipp Marquetand
Chemical Reviews, 2020.
DOI: 10.1021/acs.chemrev.0c00749

Integrating Physics-Based Modeling with Machine Learning: A Survey

J Willard, X Jia, S Xu, M Steinbach, V Kumar
arxiv.org, 2021.

Deep Learning Methods for the Design and Understanding of Solid Materials

Tian Xie
2020.

Perspective on Computational Reaction Prediction Using Machine Learning Methods in Heterogeneous Catalysis

Jiayan Xu, Xiao-Ming Cao, P. Hu
Physical Chemistry Chemical Physics, 2021, 23 (19), 11155–11179.
DOI: 10.1039/d1cp01349a

Recent Progress on Multiscale Modeling of Electrochemistry

Xiao‐Hui Yang, Yong‐Bin Zhuang, Jia‐Xin Zhu, Jia‐Bo Le, Jun Cheng
WIREs Computational Molecular Science, 2021.
DOI: 10.1002/wcms.1559

Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges

Huilin Ye, Weikang Xian, Ying Li
ACS omega, 2021, 6 (3), 1758–1772.
DOI: 10.1021/acsomega.0c05321

Machine Learning for Multi-Scale Molecular Modeling: Theories, Algorithms, and Applications

L Zhang
2020.

Global Optimization of Chemical Cluster Structures: Methods, Applications, and Challenges

Jun Zhang, Vassiliki-Alexandra Glezakou
International Journal of Quantum Chemistry, 2021, 121 (7), e26553.
DOI: 10.1002/qua.26553

Non-Contact Ultrasound

Xiang Zhang
2019.

0%
\ No newline at end of file diff --git a/search.xml b/search.xml index c4988b0..b90919d 100644 --- a/search.xml +++ b/search.xml @@ -25,7 +25,7 @@ The history of the DeepModeling communityThe "DeepModeling Community" The short-term plan and long-term vision of the DeepModeling communityIn the short term, developers in the DeepModeling community will focus on atomic-scale simulation methods and tools. This includes solving the many-body Schrödinger equation, electronic structure calculation, molecular dynamics simulation, and coarse-grained molecular dynamics simulation. This also includes tasks such as data generation, model training, high-performance optimization, etc. In addition, it includes different workflows and management tools, as well as computing power scheduling tools for different systems, different scenarios, and different purposes. It should be pointed out that the combination of physical modeling and machine learning often fundamentally changes the implementation logic of a piece of software. Therefore, the new infrastructure will not be settled once and for all, but will be gradually improved through an iterative process and upgrades from time to time. In the long run, the DeepModeling community is committed to combining physical models at all scales with machine learning methods, using the most cutting-edge computing platforms to solve the most challenging scientific and technological problems faced by the human society. -How can you contribute? If you want to contribute to an existing project in the DeepModeling community, please just do so or contactthe corresponding developer directly; if you want to open a new project in the DeepModeling community, or if you want the DeepModeling community to help develop your project, just contact contact@deepmodeling.org. +How can you contribute? If you want to contribute to an existing project in the DeepModeling community, please just do so or contactthe corresponding developer directly; if you want to open a new project in the DeepModeling community, or if you want the DeepModeling community to help develop your project, just contact contact@deepmodeling.org. If you are a programmer who loves science and is attracted by the future scientific computing platform built by the DeepModeling community, you can contribute not only through new algorithms, but also code development specifications, document writing specifications, community databases, task scheduling, workflow management and other tools. In addition, you can contribute to code architecture design and high-performance optimization tasks in the DeepModeling community. People in the field of scientific computing will greatly appreciate your expertise and contribution. If you are a hardcore developer familiar with topics such as electronic structure calculations, molecular dynamics, and finite element methods, the DeepModeling community will be your place to showcase your talents. The addition of machine learning components requires us to rethink about architecture design, each specific implementation for the tasks mentioned above and high-performance optimization. You will become important bridges that connect other developers, contributors, and users in different areas. If you have only used some basic scientific software and have worked on some post-processing scripts, the DeepModeling community also needs you. Try to ask questions and communicate on github/gitee and other communication platforms, try to give opinions, and try to fork, commit, pr... Your little by little contribution will make the DeepModeling community better and better, and the DeepModeling community will be very grateful for such contributions. diff --git a/sitemap.xml b/sitemap.xml index 8670eb3..4a27512 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -1 +1 @@ -https://deepmodeling.com/blog/papers/index.html2023-03-05monthly0.6https://deepmodeling.com/blog/2022_csi_workshop/2022-07-07monthly0.6https://deepmodeling.com/blog/papers/dpgen/index.html2022-05-10monthly0.6https://deepmodeling.com/blog/papers/deepmd-kit/index.html2022-04-30monthly0.6https://deepmodeling.com/blog/papers/others.html2021-08-08monthly0.6https://deepmodeling.com/blog/papers/reviews.html2021-08-08monthly0.6https://deepmodeling.com/blog/tutorial2/2021-07-05monthly0.6https://deepmodeling.com/blog/categories/index.html2021-06-14monthly0.6https://deepmodeling.com/blog/tutorial1/2021-06-11monthly0.6https://deepmodeling.com/blog/manifesto/2021-06-09monthly0.6https://deepmodeling.com/blog2023-03-05daily1.0https://deepmodeling.com/blog/tags/DeePMD-kit/2023-03-05weekly0.2https://deepmodeling.com/blog/categories/tutorial/2023-03-05weekly0.2 \ No newline at end of file +https://deepmodeling.com/blog/papers/index.html2023-11-06monthly0.6https://deepmodeling.com/blog/2022_csi_workshop/2022-07-07monthly0.6https://deepmodeling.com/blog/papers/dpgen/index.html2022-05-10monthly0.6https://deepmodeling.com/blog/papers/deepmd-kit/index.html2022-04-30monthly0.6https://deepmodeling.com/blog/papers/others.html2021-08-08monthly0.6https://deepmodeling.com/blog/papers/reviews.html2021-08-08monthly0.6https://deepmodeling.com/blog/tutorial2/2021-07-05monthly0.6https://deepmodeling.com/blog/categories/index.html2021-06-14monthly0.6https://deepmodeling.com/blog/tutorial1/2021-06-11monthly0.6https://deepmodeling.com/blog/manifesto/2021-06-09monthly0.6https://deepmodeling.com/blog2023-11-06daily1.0https://deepmodeling.com/blog/tags/DeePMD-kit/2023-11-06weekly0.2https://deepmodeling.com/blog/categories/tutorial/2023-11-06weekly0.2 \ No newline at end of file diff --git a/tags/DeePMD-kit/index.html b/tags/DeePMD-kit/index.html index 4083e50..534e1bf 100644 --- a/tags/DeePMD-kit/index.html +++ b/tags/DeePMD-kit/index.html @@ -1 +1 @@ -Tag: DeePMD-kit | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file +Tag: DeePMD-kit | DeepModeling

DeepModeling

Define the future of scientific computing together

0%
\ No newline at end of file diff --git a/tutorial1/index.html b/tutorial1/index.html index 456d67a..ce8ac23 100644 --- a/tutorial1/index.html +++ b/tutorial1/index.html @@ -1,5 +1,5 @@ -DP Tutorial 1: How to Setup a DeePMD-kit Training within 5 Minutes? | DeepModeling

DeepModeling

Define the future of scientific computing together

DP Tutorial 1: How to Setup a DeePMD-kit Training within 5 Minutes?

DeePMD-kit is a software to implement Deep Potential. There is a lot of information on the Internet, but there are not so many tutorials for the new hand, and the official guide is too long. Today, I'll take you 5 minutes to get started with DeePMD-kit.

Let's take a look at the training process of DeePMD-kit:

+DP Tutorial 1: How to Setup a DeePMD-kit Training within 5 Minutes? | DeepModeling

DeepModeling

Define the future of scientific computing together

DP Tutorial 1: How to Setup a DeePMD-kit Training within 5 Minutes?

DeePMD-kit is a software to implement Deep Potential. There is a lot of information on the Internet, but there are not so many tutorials for the new hand, and the official guide is too long. Today, I'll take you 5 minutes to get started with DeePMD-kit.

Let's take a look at the training process of DeePMD-kit:

 graph LR
 A[Prepare data] --> B[Training]
 B --> C[Freeze the model]
-

What? Only three steps? Yes, it's that simple.

  1. Preparing data is converting the computational results of DFT to data that can be recognized by the DeePMD-kit.
  2. Training is train a Deep Potential model using the DeePMD-kit with data prepared in the previous step.
  3. Finally, what we need to do is to freeze the restart file in the training process into a model, in other words is to extract the neural network parameters into a file for subsequent use. I believe you can't wait to get started. Let's go!

1. Preparing Data

The data format of the DeePMD-kit is introduced in the official document but seems complex. Don't worry, I'd like to introduce a data processing tool: dpdata! You can use only one line Python scripts to process data. So easy!

1
2
import dpdata
dpdata.LabeledSystem('OUTCAR').to('deepmd/npy', 'data', set_size=200)

In this example, we converted the computational results of the VASP in the OUTCAR to the data format of the DeePMD-kit and saved in to a directory named data, where npy is the compressed format of the numpy, which is required by the DeePMD-kit training. We assume OUTCAR stores 1000 frames of molecular dynamics trajectory, then where will be 1000 points after converting. set_size=200 means these 1000 points will be divided into 5 subsets, which is named as data/set.000~data/set.004, respectively. The size of each set is 200. In these 5 sets, data/set.000~data/set.003 will be considered as the training set by the DeePMD-kit, and data/set.004 will be considered as the test set. The last set will be considered as the test set by the DeePMD-kit by default. If there is only one set, the set will be both the training set and the test set. (Of course, such test set is meaningless.)

2. Training

It's required to prepare an input script to start the DeePMD-kit training. Are you still out of the fear of being dominated by INCAR script? Don't worry, it's much easier to configure the DeePMD-kit than configuring the VASP. First, let's download an example and save to input.json:

1
wget https://raw.githubusercontent.com/deepmodeling/deepmd-kit/v1.3.3/examples/water/train/water_se_a.json -O input.json

The strength of the DeePMD-kit is that the same training parameters are suitable for different systems, so we only need to slightly modify input.json to start training. Here is the first parameter to modify:

1
"type_map":     ["O", "H"],

In the DeePMD-kit data, each atom type is numbered as an integer starting from 0. The parameter gives an element name to each atom in the numbering system. Here, we can copy from the content of data/type_map.raw. For example,

1
"type_map":    ["A", "B","C"],

Next, we are going to modify the neighbour searching parameter:

1
"sel":       [46, 92],

Each number in this list gives the maximum number of atoms of each type among neighbor atoms of an atom. For example, 46 means there are at most 46 O (type 0) neighbours. Here, our elements were modified to A, B, and C, so this parameters is also required to modify. What to do if you don't know the maximum number of neighbors? You can be roughly estimate one by the density of the system, or try a number blindly. If it is not big enough, the DeePMD-kit will shoot WARNINGS. Below we changed it to

1
"sel":       [64, 64, 64]

In addtion, we need to modify

1
"systems":     ["../data/"],

to

1
"systems":     ["./data/"],

It is because that the directory to write to is ./data/ in the current directory. Here I'd like to introduce the definition of the data system. The DeePMD-kit considers that data with corresponding element types and atomic numbers form a system. Our data is generated from a molecular dynamics simulation and meets this condition, so we can put them into one system. Dpdata works the same way. If data cannot be put into a system, multiple systems is required to be set as a list here:

1
2
"training": {
"systems": ["system1", "system2"]

Finnally, we are likely to modify another two parameters:

1
2
"stop_batch":   1000000,
"batch_size": 1,

stop_batch is the numebr of training step using the SGD method of deep learning, and batch_size is the mini-batch size of data in each step.
If we want to reduce stop_batch and use batch_size that the DeePMD-kit recommends, we can use

1
2
"stop_batch":   500000,
"batch_size": "auto",

Now we have succesfully set a input file! To start training, we execuate

1
dp train input.json

and wait for results. During the training process, we can see lcurve.out to observe the error reduction.Among them, Column 4 and 5 are the test and training errors of energy (normalized by the number of atoms), and Column 6 and 7 are the test and training errors of the force.

3. Freeze the Model

After training, we can use the following script to freeze the model:

1
dp freeze

The default filename of the output model is frozen_model.pb. As so, we have got a good or bad DP model. As for the reliability of this model and how to use it, I will give you a detailed tutorial in the next post.

0%
\ No newline at end of file +

What? Only three steps? Yes, it's that simple.

  1. Preparing data is converting the computational results of DFT to data that can be recognized by the DeePMD-kit.
  2. Training is train a Deep Potential model using the DeePMD-kit with data prepared in the previous step.
  3. Finally, what we need to do is to freeze the restart file in the training process into a model, in other words is to extract the neural network parameters into a file for subsequent use. I believe you can't wait to get started. Let's go!

1. Preparing Data

The data format of the DeePMD-kit is introduced in the official document but seems complex. Don't worry, I'd like to introduce a data processing tool: dpdata! You can use only one line Python scripts to process data. So easy!

1
2
import dpdata
dpdata.LabeledSystem('OUTCAR').to('deepmd/npy', 'data', set_size=200)

In this example, we converted the computational results of the VASP in the OUTCAR to the data format of the DeePMD-kit and saved in to a directory named data, where npy is the compressed format of the numpy, which is required by the DeePMD-kit training. We assume OUTCAR stores 1000 frames of molecular dynamics trajectory, then where will be 1000 points after converting. set_size=200 means these 1000 points will be divided into 5 subsets, which is named as data/set.000~data/set.004, respectively. The size of each set is 200. In these 5 sets, data/set.000~data/set.003 will be considered as the training set by the DeePMD-kit, and data/set.004 will be considered as the test set. The last set will be considered as the test set by the DeePMD-kit by default. If there is only one set, the set will be both the training set and the test set. (Of course, such test set is meaningless.)

2. Training

It's required to prepare an input script to start the DeePMD-kit training. Are you still out of the fear of being dominated by INCAR script? Don't worry, it's much easier to configure the DeePMD-kit than configuring the VASP. First, let's download an example and save to input.json:

1
wget https://raw.githubusercontent.com/deepmodeling/deepmd-kit/v1.3.3/examples/water/train/water_se_a.json -O input.json

The strength of the DeePMD-kit is that the same training parameters are suitable for different systems, so we only need to slightly modify input.json to start training. Here is the first parameter to modify:

1
"type_map":     ["O", "H"],

In the DeePMD-kit data, each atom type is numbered as an integer starting from 0. The parameter gives an element name to each atom in the numbering system. Here, we can copy from the content of data/type_map.raw. For example,

1
"type_map":    ["A", "B","C"],

Next, we are going to modify the neighbour searching parameter:

1
"sel":       [46, 92],

Each number in this list gives the maximum number of atoms of each type among neighbor atoms of an atom. For example, 46 means there are at most 46 O (type 0) neighbours. Here, our elements were modified to A, B, and C, so this parameters is also required to modify. What to do if you don't know the maximum number of neighbors? You can be roughly estimate one by the density of the system, or try a number blindly. If it is not big enough, the DeePMD-kit will shoot WARNINGS. Below we changed it to

1
"sel":       [64, 64, 64]

In addtion, we need to modify

1
"systems":     ["../data/"],

to

1
"systems":     ["./data/"],

It is because that the directory to write to is ./data/ in the current directory. Here I'd like to introduce the definition of the data system. The DeePMD-kit considers that data with corresponding element types and atomic numbers form a system. Our data is generated from a molecular dynamics simulation and meets this condition, so we can put them into one system. Dpdata works the same way. If data cannot be put into a system, multiple systems is required to be set as a list here:

1
2
"training": {
"systems": ["system1", "system2"]

Finnally, we are likely to modify another two parameters:

1
2
"stop_batch":   1000000,
"batch_size": 1,

stop_batch is the numebr of training step using the SGD method of deep learning, and batch_size is the mini-batch size of data in each step.
If we want to reduce stop_batch and use batch_size that the DeePMD-kit recommends, we can use

1
2
"stop_batch":   500000,
"batch_size": "auto",

Now we have succesfully set a input file! To start training, we execuate

1
dp train input.json

and wait for results. During the training process, we can see lcurve.out to observe the error reduction.Among them, Column 4 and 5 are the test and training errors of energy (normalized by the number of atoms), and Column 6 and 7 are the test and training errors of the force.

3. Freeze the Model

After training, we can use the following script to freeze the model:

1
dp freeze

The default filename of the output model is frozen_model.pb. As so, we have got a good or bad DP model. As for the reliability of this model and how to use it, I will give you a detailed tutorial in the next post.

0%
\ No newline at end of file diff --git a/tutorial2/index.html b/tutorial2/index.html index 4935cad..37428cd 100644 --- a/tutorial2/index.html +++ b/tutorial2/index.html @@ -1 +1 @@ -DP Tutorial 2: DeePMD-kit: Install with Conda & Offline Packages & Docker | DeepModeling

DeepModeling

Define the future of scientific computing together

DP Tutorial 2: DeePMD-kit: Install with Conda & Offline Packages & Docker

Do you prepare to read a long article before clicking the tutorial? Since we can teach you how to setup a DeePMD-kit training in 5 minutes, we can also teach you how to install DeePMD-kit in 5 minutes. The installation manual will be introduced as follows:

Install with conda

After you install conda, you can install the CPU version with the following command:

1
conda install deepmd-kit=*=*cpu lammps-dp=*=*cpu -c deepmodeling

To install the GPU version containing CUDA 10.1:

1
conda install deepmd-kit=*=*gpu lammps-dp=*=*gpu -c deepmodeling

If you want to use the specific version, just replace * with the version:

1
conda install deepmd-kit=1.3.3=*cpu lammps-dp=1.3.3=*cpu -c deepmodeling

Install with offline packages

Download offline packages in the Releases page, or use wget:

1
wget https://github.com/deepmodeling/deepmd-kit/releases/download/v1.3.3/deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh -O deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh

Take an example of v1.3.3. Execuate the following commands and just follow the prompts.

1
sh deepmd-kit-1.3.1-cuda10.1_gpu-Linux-x86_64.sh

With Docker

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cpu
To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cuda10.1_gpu

Tips

dp is the program of DeePMD-kit and lmp is the program of LAMMPS.

1
2
dp -h
lmp -h

GPU version has contained CUDA Toolkit. Note that different CUDA versions support different NVIDIA driver versions. See NVIDIA documents for details.

Don't hurry up and try such a convenient installation process. But I still want to remind everyone that the above installation methods only support the official version released by DeePMD-kit. If you need to use the devel version, you still need to go through a long compilation process. Please refer to the installation manual.

0%
\ No newline at end of file +DP Tutorial 2: DeePMD-kit: Install with Conda & Offline Packages & Docker | DeepModeling

DeepModeling

Define the future of scientific computing together

DP Tutorial 2: DeePMD-kit: Install with Conda & Offline Packages & Docker

Do you prepare to read a long article before clicking the tutorial? Since we can teach you how to setup a DeePMD-kit training in 5 minutes, we can also teach you how to install DeePMD-kit in 5 minutes. The installation manual will be introduced as follows:

Install with conda

After you install conda, you can install the CPU version with the following command:

1
conda install deepmd-kit=*=*cpu lammps-dp=*=*cpu -c deepmodeling

To install the GPU version containing CUDA 10.1:

1
conda install deepmd-kit=*=*gpu lammps-dp=*=*gpu -c deepmodeling

If you want to use the specific version, just replace * with the version:

1
conda install deepmd-kit=1.3.3=*cpu lammps-dp=1.3.3=*cpu -c deepmodeling

Install with offline packages

Download offline packages in the Releases page, or use wget:

1
wget https://github.com/deepmodeling/deepmd-kit/releases/download/v1.3.3/deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh -O deepmd-kit-1.3.3-cuda10.1_gpu-Linux-x86_64.sh

Take an example of v1.3.3. Execuate the following commands and just follow the prompts.

1
sh deepmd-kit-1.3.1-cuda10.1_gpu-Linux-x86_64.sh

With Docker

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cpu
To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.2.2_cuda10.1_gpu

Tips

dp is the program of DeePMD-kit and lmp is the program of LAMMPS.

1
2
dp -h
lmp -h

GPU version has contained CUDA Toolkit. Note that different CUDA versions support different NVIDIA driver versions. See NVIDIA documents for details.

Don't hurry up and try such a convenient installation process. But I still want to remind everyone that the above installation methods only support the official version released by DeePMD-kit. If you need to use the devel version, you still need to go through a long compilation process. Please refer to the installation manual.

0%
\ No newline at end of file