-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbam_heat.py
executable file
·306 lines (249 loc) · 11.4 KB
/
bam_heat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python
from optparse import OptionParser
import math, os, pdb, random, shutil, stats, subprocess, sys, tempfile
import pysam
import count_reads, gff, ggplot
################################################################################
# bam_heat.py
#
# Plot read coverage in a BAM file surrounding the median points of GFF entries
# as a heatmap.
################################################################################
################################################################################
# main
################################################################################
def main():
usage = 'usage: %prog [options] <gff> <bam1,bam2,...>'
parser = OptionParser(usage)
parser.add_option('-c', dest='control_bam_files', default=None, help='Control BAM files (comma separated)')
parser.add_option('-l', dest='log', default=False, action='store_true', help='log2 coverage [Default: %default]')
parser.add_option('-k', dest='gtf_key', default=None, help='GTF key to hash gff entries by')
parser.add_option('-m', dest='max_features', default=2000, type='int', help='Maximum number of features to plot [Default: %default]')
parser.add_option('-o', dest='output_pre', default='bam', help='Output prefix [Default: %default]')
parser.add_option('-s', dest='sorted_gene_files', help='Files of sorted gene lists. Plot heatmaps in their order')
parser.add_option('-u', dest='range', default=2000, type='int', help='Range around peak middle [Default: %default]')
(options,args) = parser.parse_args()
if len(args) != 2:
parser.error('Must provide gtf file and BAM file')
else:
gff_file = args[0]
bam_files = args[1].split(',')
if options.control_bam_files:
control_bam_files = options.control_bam_files.split(',')
############################################
# extend GFF entries to range (and sample)
############################################
feature_count = 0
for line in open(gff_file):
feature_count += 1
sample_prob = min(1.0, options.max_features / float(feature_count))
gff_range_fd, gff_range_file = tempfile.mkstemp()
gff_range_out = open(gff_range_file, 'w')
for line in open(gff_file):
a = line.split('\t')
start = int(a[3])
end = int(a[4])
mid = start + (end-start)/2
range_start = mid - options.range/2
range_end = mid + options.range/2
if range_start > 0:
a[3] = str(mid - options.range/2)
a[4] = str(mid + options.range/2)
a[-1] = a[-1].rstrip()
if random.random() < sample_prob:
print >> gff_range_out, '\t'.join(a)
gff_range_out.close()
############################################
# compute coverage
############################################
coverage, fragments = compute_coverage(gff_range_file, bam_files, options.gtf_key)
if options.control_bam_files:
coverage_control, fragments_control = compute_coverage(gff_range_file, control_bam_files, options.gtf_key)
# clean
os.close(gff_range_fd)
os.remove(gff_range_file)
############################################
# normalize
############################################
# normalize coverages (and add pseudocounts)
for feature_id in coverage:
for i in range(len(coverage[feature_id])):
coverage[feature_id][i] = (1+coverage[feature_id][i])/fragments
if options.control_bam_files:
coverage_control[feature_id][i] = (1+coverage_control[feature_id][i])/fragments_control
############################################
# sorted genes
############################################
features_sorted = []
if options.sorted_gene_files:
# for each sorted list
for sorted_gene_file in options.sorted_gene_files.split(','):
# collect feature_id's
features_sorted.append([])
for line in open(sorted_gene_file):
feature_id = line.split()[0]
# verify randomly selected
if feature_id in coverage:
features_sorted[-1].append(feature_id)
else:
# tuple feature_id's with mean coverage
feature_id_stat = []
for feature_id in coverage:
if options.control_bam_files:
feature_stat = stats.mean([math.log(coverage[feature_id][i],2) - math.log(coverage_control[feature_id][i],2) for i in range(len(coverage[feature_id]))])
else:
feature_stat = stats.geo_mean([coverage[feature_id][i] for i in range(len(coverage[feature_id]))])
feature_id_stat.append((feature_stat,feature_id))
# sort
feature_id_stat.sort(reverse=True)
# store as the only sorted list
features_sorted.append([feature_id for (feature_stat, feature_id) in feature_id_stat])
############################################
# plot heatmap(s)
############################################
# if multiple sorts, create a dir for the plots
if len(features_sorted) > 1:
if not os.path.isdir('%s_heat' % options.output_pre):
os.mkdir('%s_heat' % options.output_pre)
for s in range(len(features_sorted)):
df = {'Index':[], 'Feature':[], 'Coverage':[]}
for f in range(len(features_sorted[s])):
feature_id = features_sorted[s][f]
for i in range(-options.range/2,options.range/2+1):
df['Index'].append(i)
df['Feature'].append(f)
if options.log:
cov = math.log(coverage[feature_id][i+options.range/2],2)
else:
cov = coverage[feature_id][i+options.range/2]
if options.control_bam_files:
if options.log:
cov -= math.log(coverage_control[feature_id][i+options.range/2],2)
else:
cov = cov / coverage_control[feature_id][i+options.range/2]
df['Coverage'].append('%.4e' % cov)
r_script = '%s/bam_heat_heat.r' % os.environ['RDIR']
if len(features_sorted) == 1:
out_pdf = '%s_heat.pdf' % options.output_pre
else:
sorted_gene_file = options.sorted_gene_files.split(',')[s]
sorted_gene_pre = os.path.splitext(os.path.split(sorted_gene_file)[-1])[0]
out_pdf = '%s_heat/%s.pdf' % (options.output_pre,sorted_gene_pre)
ggplot.plot(r_script, df, [out_pdf, options.control_bam_files!=None])
############################################
# plot meta-coverage
############################################
df = {'Index':[], 'Coverage':[]}
if options.control_bam_files:
df['Type'] = []
for i in range(-options.range/2,options.range/2+1):
df['Index'].append(i)
if options.log:
df['Coverage'].append(stats.geo_mean([coverage[feature_id][i+options.range/2] for feature_id in coverage]))
else:
df['Coverage'].append(stats.mean([coverage[feature_id][i+options.range/2] for feature_id in coverage]))
if options.control_bam_files:
df['Type'].append('Primary')
df['Index'].append(i)
df['Type'].append('Control')
if options.log:
df['Coverage'].append(stats.geo_mean([coverage_control[feature_id][i+options.range/2] for feature_id in coverage_control]))
else:
df['Coverage'].append(stats.mean([coverage_control[feature_id][i+options.range/2] for feature_id in coverage_control]))
r_script = '%s/bam_heat_meta.r' % os.environ['RDIR']
out_pdf = '%s_meta.pdf' % options.output_pre
ggplot.plot(r_script, df, [out_pdf])
################################################################################
# compute_coverage
#
# Input:
# gff_file: GFF file of equal-sized genome features.
# bam_file: BAM file of reads alignments.
# gtf_key: GTF key by which is hash coverage arrays.
################################################################################
def compute_coverage(gff_file, bam_files, gtf_key):
# initialize counters
fragments = 0
coverage = {}
for line in open(gff_file):
a = line.split('\t')
gchrom = a[0]
gstart = int(a[3])
gend = int(a[4])
if gtf_key == None:
instance_id = (gchrom,gstart,gend)
else:
instance_id = gff.gtf_kv(a[8])[gtf_key]
coverage[instance_id] = [0]*(gend-gstart+1)
# process bam files
for bam_file in bam_files:
# filter BAM for mapping quality
bam_mapq_fd, bam_mapq_file = tempfile.mkstemp(dir='%s/research/scratch/temp' % os.environ['HOME'])
bam_in = pysam.Samfile(bam_file, 'rb')
bam_mapq_out = pysam.Samfile(bam_mapq_file, 'wb', template=bam_in)
for aligned_read in bam_in:
if aligned_read.mapq > 0:
bam_mapq_out.write(aligned_read)
bam_mapq_out.close()
# count fragments and hash multi-mappers
multi_maps = {}
paired_reads = False
for aligned_read in pysam.Samfile(bam_mapq_file, 'rb'):
try:
nh_tag = aligned_read.opt('NH')
except:
nh_tag = 1.0
if aligned_read.is_paired:
paired_reads = True
fragments += 0.5/nh_tag
else:
fragments += 1.0/nh_tag
if nh_tag > 1:
multi_maps[aligned_read.qname] = nh_tag
# count reads
p = subprocess.Popen('intersectBed -split -wo -bed -abam %s -b %s' % (bam_mapq_file, gff_file), shell=True, stdout=subprocess.PIPE)
for line in p.stdout:
a = line.split('\t')
rstart = int(a[1])+1 # convert back to 1-based
rend = int(a[2])
rheader = a[3]
# because intersectBed screws up indels near endpoints
if rstart < rend:
gchrom = a[12]
gstart = int(a[15])
gend = int(a[16])
gstrand = a[18]
if gtf_key == None:
instance_id = (gchrom,gstart,gend)
else:
instance_id = gff.gtf_kv(a[20])[gtf_key]
cov_start = max(rstart, gstart)
cov_end = min(rend, gend)
if gstrand == '+':
inc_start = cov_start - gstart
inc_end = cov_end - gstart + 1
else:
inc_start = gend - cov_end
inc_end = gend - cov_start + 1
# find multi-map number, which may require removing a suffix
if rheader in multi_maps:
mm = multi_maps[rheader]
else:
rheader_base = rheader[:rheader.rfind('/')]
if rheader_base in multi_maps:
mm = multi_maps[rheader_base]
else:
mm = 1.0
for i in range(inc_start, inc_end):
coverage[instance_id][i] += 1.0/mm
p.communicate()
# clean
os.close(bam_mapq_fd)
os.remove(bam_mapq_file)
return coverage, fragments
################################################################################
# __main__
################################################################################
if __name__ == '__main__':
main()
#pdb.runcall(main)