-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmemory.fs
244 lines (185 loc) · 6.11 KB
/
memory.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
\ memory.fs -- Heap allocation
\ This file provides support for Forth words ALLOCATE, FREE and
\ RESIZE by a simple first-fit strategy implementation.
\ Copyright 2011,2012 (C) David Vazquez
\ This file is part of Eulex.
\ Eulex is free software: you can redistribute it and/or modify
\ it under the terms of the GNU General Public License as published by
\ the Free Software Foundation, either version 3 of the License, or
\ (at your option) any later version.
\ Eulex is distributed in the hope that it will be useful,
\ but WITHOUT ANY WARRANTY; without even the implied warranty of
\ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
\ GNU General Public License for more details.
\ You should have received a copy of the GNU General Public License
\ along with Eulex. If not, see <http://www.gnu.org/licenses/>.
require @string.fs
require @structures.fs
require @kernel/multiboot.fs
\ Heap region memory limits. It covers from the end of the dictionary
\ to the end of the upper memory as provided by the
\ multiboot-compliant bootloader.
dp-limit 2aligned constant heap-start
mem-upper-limit 1- 2 cells - 2aligned constant heap-end
heap-end heap-start - constant heap-size
struct
( reserved ) cell noname field
cell field chunk-size
0 field chunk>addr
end-struct chunk-alloc%
struct
chunk-alloc% noname field
cell field chunk-next \ used if it is free.
cell field chunk-previous \ used if it is free.
end-struct chunk%
: chunk>size ( chunk -- u )
chunk-size @ ;
: addr>chunk ( addr -- chunk )
chunk-alloc% - ;
: chunk>end ( chunk -- )
dup chunk>addr swap chunk>size + ;
\ Sentinel node. It is kept to make sure that there is always a first
\ node in the list, which makes easier the implementation.
heap-start constant sentinel-chunk-begin
heap-end chunk% - constant sentinel-chunk-end
: align-chunk-size ( u -- u* )
dup cell negate u<= if
2aligned
else
drop $ffffffff
then ;
: validate-chunk-size ( u -- u* )
align-chunk-size dup chunk% u<= if
drop chunk%
endif ;
\ Note that all the following words work for available/free
\ chunks. So, when you read `chunk' in the code, you should think
\ about free chunk. However, some operations can be used on chunks of
\ allocated memory.
: next-chunk ( chunk -- next-chunk )
chunk-next @ ;
: previous-chunk ( chunk -- previous-chunk )
chunk-previous @ ;
: first-chunk ( -- chunk )
sentinel-chunk-begin next-chunk ;
: first-chunk? ( chunk -- flag )
first-chunk = ;
: last-chunk? ( chunk -- flag )
next-chunk sentinel-chunk-end = ;
: null-chunk? ( chunk -- flag )
sentinel-chunk-end = ;
: chunk-neighbours ( chunk -- previous next )
dup previous-chunk swap next-chunk ;
: link-chunks ( chunk1 chunk2 -- )
2dup swap chunk-next ! chunk-previous ! ;
: enough-large-chunk? ( u chunk -- flag )
chunk>size u<= ;
: find-enough-chunk ( u -- chunk )
first-chunk
begin dup null-chunk? not while
2dup enough-large-chunk? if nip exit endif
next-chunk
repeat
nip ;
: preceding-chunk? ( addr chunk -- flag )
dup -rot next-chunk between ;
: find-preceding-chunk ( addr -- chunk )
sentinel-chunk-begin
begin 2dup preceding-chunk? not while
next-chunk
repeat
nip ;
: insert-chunk ( preceding chunk -- )
2dup swap next-chunk link-chunks link-chunks ;
: delete-chunk ( chunk -- )
chunk-neighbours link-chunks ;
: adjust-chunk-size ( u chunk -- )
chunk-size ! ;
: chunk-header ( start end -- chunk )
over - chunk-alloc% - swap tuck adjust-chunk-size ;
: create-chunk ( start end -- )
chunk-header
dup find-preceding-chunk
swap tuck insert-chunk ;
: expand-chunk ( u chunk -- )
tuck chunk>size + swap adjust-chunk-size ;
: reduce-chunk ( u chunk -- )
swap negate swap expand-chunk ;
: too-large-chunk? ( n chunk -- flag )
chunk>size swap chunk% + 2* u>= ;
\ Resize CHUNK to U and return a new available new-chunk.
: split-allocated-chunk ( u chunk -- new-chunk )
dup chunk>end >r
tuck adjust-chunk-size
chunk>end r> create-chunk ;
: reserve-chunk ( u chunk -- new-chunk )
2dup too-large-chunk? if
dup delete-chunk tuck split-allocated-chunk drop
else
nip dup delete-chunk
endif ;
\ Coalescing
: adjoint-chunks? ( chunk1 chunk2 -- flag )
swap chunk>end = ;
: limit-chunks? ( chunk1 chunk2 -- flag )
first-chunk? swap last-chunk? or ;
: coalescable? ( chunk1 chunk2 -- flag )
2dup adjoint-chunks? -rot limit-chunks? not and ;
: absorb-chunk ( chunk1 chunk2 -- )
chunk>size chunk-alloc% + swap expand-chunk ;
: try-coalesce-chunks ( chunk1 chunk2 -- chunk )
2dup coalescable? if
2dup absorb-chunk delete-chunk
else
drop
endif ;
: try-coalesce ( chunk -- chunk )
dup chunk-neighbours rot swap
try-coalesce-chunks
try-coalesce-chunks ;
( Initialization )
( )
( ) sentinel-chunk-begin chunk% 0 fill
( ) sentinel-chunk-end chunk% 0 fill
( ) sentinel-chunk-begin sentinel-chunk-end link-chunks
( )
( ) sentinel-chunk-begin chunk% +
( ) sentinel-chunk-end
( ) create-chunk drop
( )
( ----------------- )
: allocate ( u -- a-addr error )
validate-chunk-size
dup find-enough-chunk
dup null-chunk? if
2drop 0 -1
else
reserve-chunk chunk>addr 0
endif ;
: free ( a-addr -- error )
addr>chunk dup chunk>end create-chunk try-coalesce drop 0 ;
: reallocate-memory ( addr1 addr2 u -- error )
\ Copy u bytes from ADDR1 to ADDR2 and free ADDR1.
rot dup >r -rot move r> free ;
: resize-with-reallocation ( addr u -- addr error )
dup allocate ?dup if
2>r 2drop 2r>
else
dup >r swap reallocate-memory r> swap
endif ;
: resize-without-reallocation ( addr u -- addr error )
swap addr>chunk
2dup too-large-chunk? if
tuck split-allocated-chunk try-coalesce drop
else
nip
endif
chunk>addr 0 ;
: resize ( a-addr u -- a-addr error )
validate-chunk-size
over addr>chunk chunk>size over u< if
resize-with-reallocation
else
resize-without-reallocation
endif ;
\ memory.fs ends here