-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrub_cube.py
160 lines (140 loc) · 5.92 KB
/
rub_cube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# ----------------------------------------------------------------------
# Rubik's cube simulator
# Numpy is used for face representation and operation
# Matplotlib only for plotting
# Written by Miguel Hernando (2017)
# The aim of this code is to give a simple rubik cube simulator to
# test Discrete Planning Techniques.
# The code was developed for AI teaching purpose.
# Universidad Politécnica de Madrid
import numpy as np
import matplotlib.pyplot as plt
import random
from mpl_toolkits.axes_grid1 import ImageGrid
from matplotlib import colors
'''
Face State order as it is internally represented
| 4 |
| 0 | 1 | 2 | 3 |
| 5 |
Each face is represented by state matrix (NxN) and each cell is an integuer (0-5).
Row and columns are disposed with the origin at the upper left corner,
with faces disposed as the unfolded cube states.
Rotations are referred to axis relative faces.
The outward-pointing normal of face 1 is the X axis.
The outward-pointing normal of face 2 is the Y axis.
The outward-pointing normal of face 4 is the Z axis.
Rotations are considered positive if they are ccw around the axis (math positive rotation)
The cube slices are considered as layers. The upper layer (faces 1, 2 or 4) have index 0, while de
backward layers (3,0,5) have index N-1 (N is the cube dimension)
Initial colors have the same index than their respective faces
'''
def totuple(a):
try:
return tuple(totuple(i) for i in a)
except TypeError:
return a
class RubCube:
# face + rotation, face -, lateral faces (index, [tuple 1] [tuple2) tomando como base la gira +
# giro X
F_axis = {'front': 1, 'back': 3, 'faces': ((2, (0, 1), (-1, 0)),
(4, (-1, 0), (0, -1)),
(0, (0, -1), (1, 0)),
(5, (1, 0), (0,
1)))} # giro F realizado en la cara 1 capa i afecta a la i*[0,i], (0...N)*[-i 0]
# giro Y
R_axis = {'front': 2, 'back': 0, 'faces': ((3, (0, 1), (-1, 0)),
(4, (0, -1), (1, 0)),
(1, (0, -1), (1, 0)),
(5, (0, -1), (1,
0)))} # giro R realizado en la cara 2 capa i afecta a la i*[0,i], (0...N)*[-i 0]
# giro Z
U_axis = {'front': 4, 'back': 5, 'faces': ((0, (1, 0), (0, 1)),
(1, (1, 0), (0, 1)),
(2, (1, 0), (0, 1)),
(3, (1, 0), (0,
1)))} # giro U realizado en la cara 4 capa i afecta a la i*[0,i], (0...N)*[-i 0]
axis_dict = {'x': F_axis, 'y': R_axis, 'z': U_axis}
def __init__(self, N=3):
self._N = N
self.reset()
def rotate_90(self, axis_name='x', n=0, n_rot=1):
'''rotates 90*n_rot around one axis ('x','y','z') the layer n'''
if axis_name not in self.axis_dict:
return
axis = self.axis_dict[axis_name]
if n == 0: # rotate the front face
self._state[axis['front']] = np.rot90(self._state[axis['front']], k=n_rot)
if n == self._N - 1:
self._state[axis['back']] = np.rot90(self._state[axis['back']], k=n_rot)
aux = []
for f in axis['faces']:
if f[1][0] > 0: # row +
r = self._state[f[0]][n, ::f[2][1]]
elif f[1][0] < 0: # row -
r = self._state[f[0]][-(n + 1), ::f[2][1]]
elif f[1][1] > 0: # column +
r = self._state[f[0]][::f[2][0], n]
else:
r = self._state[f[0]][::f[2][0], -(n + 1)]
aux.append(r)
raux = np.roll(np.array(aux), (self._N) * n_rot)
for i,f in enumerate(axis['faces']):
r = raux[i]
if f[1][0] > 0: # row +
self._state[f[0]][n, ::f[2][1]] = r
elif f[1][0] < 0: # row -
self._state[f[0]][-(n + 1), ::f[2][1]] = r
elif f[1][1] > 0: # column +
self._state[f[0]][::f[2][0], n] = r
else:
self._state[f[0]][::f[2][0], -(n + 1)] = r
def set_State(self, state):
self._state = np.array(state)
def get_State(self):
return totuple(self._state)
def plot(self, block=True):
plot_list = ((1, 4), (4, 0), (5, 1), (6, 2), (7, 3), (9, 5))
color_map = colors.ListedColormap(['#00008f', '#cf0000', '#009f0f', '#ff6f00', 'w', '#ffcf00'], 6)
fig = plt.figure(1, (8., 8.))
grid = ImageGrid(fig, 111, # similar to subplot(111)
nrows_ncols=(3, 4), # creates 2x2 grid of axes
axes_pad=0.1, # pad between axes in inch.
)
for p in plot_list:
grid[p[0]].matshow(self._state[p[1]], vmin=0, vmax=5, cmap=color_map)
plt.show(block=block)
def reset(self):
self._state = []
for i in range(6):
self._state.append(i * np.ones((self._N, self._N), dtype=np.int8))
def randomMoves(self, num):
moves=[]
for i in range(num):
x = random.choice(('x','y','z'))
num = random.choice((0, self._N - 1))
n_rot = random.choice((-1, 1, 2))
self.rotate_90(x, num, n_rot)
moves.append((x, num, n_rot))
return moves
if __name__ == '__main__':
import sys
try:
N = int(sys.argv[1])
except:
N = 3
a = RubCube(N)
a.rotate_90('x', 0, -1)
a.rotate_90('y', 0, )
a.rotate_90('z', 0, -1)
c = a.get_State()
print(c)
a.plot()
a.reset()
a.plot()
m=a.randomMoves(4)
print(m)
a.plot()
for x in reversed(m):
a.rotate_90(x[0],x[1],-x[2])
a.plot()