-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathprox_max.m
53 lines (48 loc) · 1.79 KB
/
prox_max.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function op = prox_max( q )
%PROX_MAX Entry-wise maximum element.
% OP = PROX_MAX( q ) implements the nonsmooth function
% OP(X) = q * max( X(:) ).
% Q is optional; if omitted, Q=1 is assumed. But if Q is supplied,
% then it must be a positive real scalar.
% Dual: proj_simplex.m (at least if X is a vector)
% See also proj_simplex, prox_linf, prox_linf
if nargin == 0,
q = 1;
elseif ~isnumeric( q ) || ~isreal( q ) || numel( q ) ~= 1 || q <= 0,
error( 'Argument must be positive.' );
end
op = @(varargin)prox_lmax_q( q, varargin{:} );
function [ v, x ] = prox_lmax_q( q, x, t )
if nargin < 2,
error( 'Not enough arguments.' );
end
% We have two options when input x is a matrix:
% Does the user want to treat it as x(:),
% Or does the user want to treat each column separately?
% Most other functions (e.g. l1, linf) treat it as x(:)
% so that will be the default. However, we leave it
% as a hard-coded option so that the user can change it
% if they want.
% (Note: the dual function, proj_simplex, vectorizes it)
VECTORIZE = true;
% right now, we do not have the non-vectorized version implemented.
tau = max( x(:) );
if nargin == 3,
s = sort( nonzeros(x), 'descend' );
% s = sort( x, 'descend' ); % 'nonzeros' does a x(:) operation
cs = cumsum(s);
ndx = find( cs - (1:numel(s))' .* [s(2:end);0] >= t * q, 1 );
if ~isempty( ndx ),
tau = ( cs(ndx) - t * q ) / ndx;
x = x .* ( tau ./ max( x, tau ) );
else
x(:) = 0; % adding Oct 21
tau = 0;
end
elseif nargout == 2,
error( 'This function is not differentiable.' );
end
v = q * tau;
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.