Skip to content
This repository has been archived by the owner on Jan 20, 2024. It is now read-only.

[CONTENT] Solve this problem and write out a solution for it. (or make a video) #277

Open
ykdojo opened this issue Oct 7, 2022 · 23 comments
Assignees

Comments

@ykdojo
Copy link
Collaborator

ykdojo commented Oct 7, 2022

Description

One of the approved questions we have was recently asked by Google, and it is this:

You need to check whether the string is well nested or not based on two conditions:

  1. If they are, return the string as-is.
  2. If they are not, repair the string so that the parentheses are well nested and return the result.

You can perform three actions to validate the string. Three actions are: Delete, Add, Update.

You must convert it a well-nested string with the minimum number of actions.

Test Examples:
Input: (()
Output: (()), or () or ()()

Input: (())))
Output: ((()))

It'll be good to have a solution for this so we can display it on the website, and so we can make a video out of it.

@Rakteem007
Copy link

can you assign this to me?

@Akshay1018
Copy link
Contributor

The solution should be language-specific like python or is it ok with any language?

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 7, 2022

it's ok with any language!

if we have solutions in multiple languages, it'd be even cooler I think

@Rakteem007
Copy link

@ykdojo sir , I fixed the issue

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 8, 2022

@Akshay1018 by the way, the question is much harder when there's the "update" option instead of just delete and add. Any thoughts about it? Should it be phrased in a two-stage way?

@Akshay1018
Copy link
Contributor

@ykdojo Right, this question is hard because we need to return the minimum operations based on two conditions. Let's talk about the conceptual overview. I will take an example and try to return minimum operations.
example-1
input - ((()

intuition-1 we can add two parentheses at last and our total operation to make it valid will be 2 right?
( ( ( ) ) )
^^

intuition-2 Please observe we can replace the second index with closed parentheses and our total operation to make it valid will be only 1.
before update operation -
( ( ( )
After the update operation - we are replacing index 1
( ) ( )

If we take a minimum of both the 2nd intuition will be returned {Math.min(2,1)}

We can approach this using Dynamic programming and we need to take care of edge cases, like when to use the operation to return the minimum.
Please add some more thoughts and changes in the conceptual overview then we will come up with the DP solution + complexity tradeoffs.

@Akshay1018
Copy link
Contributor

@ykdojo any thoughts on this?

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 11, 2022

@Akshay1018 I'll get back to you! I didn't have a chance to respond here yet

@Akshay1018
Copy link
Contributor

@ykdojo cool! Take your time. Thanks.

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 12, 2022

try to return minimum operations

Are you saying we need to return an integer from this function? Because if that's the case, the problem would be much easier, and honestly more realistic as an interview question.

we need to take care of edge cases, like when to use the operation to return the minimum.

"when to use the operation to return the minimum"

^Can you clarify what you mean by that exactly?

Other than that:

Please add some more thoughts and changes in the conceptual overview then we will come up with the DP solution + complexity tradeoffs.

This sounds good!

@ykdojo ykdojo moved this to Higher priority in defaang Oct 13, 2022
@ykdojo ykdojo added this to defaang Oct 13, 2022
@Akshay1018
Copy link
Contributor

@ykdojo When we get the minimum number of operations to solve this problem then we can easily create the valid parenthesis using backtracking.
From the above example, we know that using only one operation n =1 we can solve the problem. The valid parenthesis we can make is 2n 2 x 1, with two open and two closed parentheses. There are no restrictions on the order, we can return the parenthesis in any order.

minimum operations (n) = 1
valid parenthesis = 2n = 2 x 1 = 2

output = (()) or ()()

is this sounds good?

@Akshay1018
Copy link
Contributor

I can say this is two step process/solution:

Count the operations we need to add to make it valid.

Using that count, create the valid parenthesis and return the result.

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 15, 2022

Sounds good.

I think we can split it into two problems then, if it's with you.

The first problem will ask you to output the min # operations.

The second one, with the same setup, will ask you to output a list (or a set) of end-state valid parenthesis strings.

@Akshay1018
Copy link
Contributor

Exactly, we can say the second one is follow up output a list (or a set) of end-state valid parenthesis strings.

@ykdojo ykdojo moved this from Higher priority to In progress in defaang Oct 17, 2022
@ykdojo ykdojo self-assigned this Oct 17, 2022
@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 17, 2022

@Akshay1018 sounds good! I'll start working on solving it, then. Feel free to start writing a solution for it if you'd still like to, as well.

@Akshay1018
Copy link
Contributor

@ykdojo Sure, I'll write and update ASAP.

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 18, 2022

@Akshay1018 cool, thank you so much!

@subhoghoshX subhoghoshX moved this to In Progress in defaang Oct 20, 2022
@Akshay1018
Copy link
Contributor

Akshay1018 commented Oct 22, 2022

Brute Force Solution:

Step 1 counts a minimum number of operations to make parenthesis valid.

`class Solution {
public int minimumOperations(String str){
if(str.length() ==0){
return 0;
}
int addOperations = 0;
int deleteOperations = 0;
int replaceOperations = 0;
//check if string is well nested then return as-is
if(isValidString(str)){
return str;
}else{
addOperations += addOperationCount(str);
deleteOperations += deleteOperationsCount(str);
replaceOperations += replaceOperationsCount(str);
}
return Math.min(addOperations, Math.min(deleteOperations, replaceOperations));
}
// count add operations
public int addOperationCount(String str){
Stack st = new Stack<>();
int count =0;

    for(char ch : str.toCharArray()){
        if(ch == '('){
            st.push(ch);
        }else if(ch == ')' && !st.isEmpty()){
            st.pop();
            count+= 2;
        }
    }
    return str.length() - count;
}
// count delete operations
public int deleteOperationsCount(String str){
    int total =0;
    int temp =0;
    
    for(char ch: str.toCharArray()){
        if(ch == '('){
            total += 1;
        }else if(ch == ')' && total != 0){
            total -= 1;
        }else{
            temp += 1;
        }
    }
    return total + temp;
}
// count replace operations
public int replaceOperationsCount(String str){
    int openParenthesisCount =0;
    int closeParenthesisCount =0;
    int openReplaceCount =0;
    int closeReplaceCount =0;
    
    for(char ch: str.toCharArray()){
        if(ch == '('){
            openParenthesisCount+= 1;
        }
        if(ch == ')'){
           closeParenthesisCount+= 1;
        }
    }
    if(openParenthesisCount % 2 ==0){
        openReplaceCount += Math.abs(openParenthesisCount / 2);
    }else{
        openReplaceCount += Math.abs(openParenthesisCount / 2 + 1);
    }
    if(closeParenthesisCount % 2 == 0){
        closeReplaceCount += Math.abs(closeParenthesisCount / 2);
    }else{
        closeReplaceCount += Math.abs(closeParenthesisCount / 2 + 1);
    }
    
    return openReplaceCount+closeReplaceCount;
}
// check valid String
public boolean isValidString(String str){
    int validCount =0;
    for(char ch: str.toCharArray()){
        if(ch == '('){
            validCount += 1;
        }
        if(ch == ')'){
            validCount -= 1;
        }
    }
    return validCount == 0 ? true : false;
}

}`

@Akshay1018
Copy link
Contributor

Step -2 Generate Valid parenthesis with minimum count and return the result

class Solution {
public List generateValidParenthesis(int num){
List res = new ArrayList<>();
backtrack(res, num, 0, 0, "");
return res;
}
public void backtrack(List res, int max, int close, int open, String curr){
if(res.size() == num*2){
res.add(curr);
return;
}
if(open < max){
backtrack(res, max, open+1, close, curr+"(");
}
if(close < open){
backtrack(res, max, open, close+1, curr+")");
}
}
}

@Akshay1018
Copy link
Contributor

@ykdojo Please check this solution. This is a brute force approach, we can optimize this solution, and let me know your thoughts on it. Thanks.

@ykdojo
Copy link
Collaborator Author

ykdojo commented Oct 26, 2022

@Akshay1018 thank you! I'll check it soon

@Akshay1018
Copy link
Contributor

@ykdojo sure, please check on this and we will come up with an optimized solution.

@mamonraab
Copy link

mamonraab commented Oct 26, 2022

here is my solution
the solution , will use 2 stack and 2 counters
for each closing case and open case
and will flip each close case if no open case for it and add it to open cases stack

full code with test cases checker
https://gist.github.com/mamonraab/9d2d537bfc4537fb86219d8a3c70e7be


def correctstring(s):
    open_stack = []
    close_stack = []
    open_counter = 0
    close_counter = 0
    for ch in s:
        if ch == '(':
            # open case
            open_stack.append(ch)
            open_counter +=1
            close_counter -=1
        elif ch == ')':
            #close case
            if (len(open_stack) == len(close_stack) ) and (open_counter == 0) and (close_counter == 0):
                open_stack.append('(')
                open_counter +=1
                close_counter -=1
            else:
                close_stack.append(ch)
                close_counter +=1
                open_counter -=1
    while open_counter < 0:
        open_stack.append('(')
        open_counter +=1
    while close_counter < 0: 
        close_stack.append(')')
        close_counter +=1

    return ''.join(open_stack) + ''.join(close_stack)

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Projects
Status: In Progress
Development

No branches or pull requests

4 participants