-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinuous_impulse_encoding.py
77 lines (72 loc) · 2.54 KB
/
continuous_impulse_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import matplotlib.pyplot as plt
import math
def neuron_type(neuron_type):
"""Provides parameters for each type of neuron, according to the Izhikevich Neuron Model"""
match neuron_type :
case "FS":
a = 0.1
b = 0.2
c = -65
d = 2
case "LTS":
a = 0.02
b = 0.25
c = -65
d = 2
case "IB":
a = 0.02
b = 0.2
c = -55
d = 4
case "CH":
a = 0.02
b = 0.2
c = -50
d = 2
case "RS":
a = 0.02
b = 0.2
c = -65
d = 8
return a , b , c , d
def continous_impulse_encoding(neurontype, title, input_current = 7):
a, b, c, d = neuron_type(neurontype)
initial_time, total_time, dt = 100, 1000, 0.5
T = math.ceil(total_time / dt)
T = int(T)
membrane_potential = np.zeros((T,1))
recovery_variable = np.zeros_like(membrane_potential)
current = np.zeros_like(membrane_potential)
current_axis = np.zeros_like(current)
membrane_potential[0] = -70
recovery_variable[0] = -14
for t in range(T-3):
I_applied = [input_current if t*dt > initial_time else 0][0]
current[t] = I_applied
if I_applied > 10: I_applied = 10
current_axis[t] = I_applied - 90
I_applied = current[t]
if membrane_potential[t] < 35:
dv = (0.04 * membrane_potential[t] + 5)*membrane_potential[t] + 140 - recovery_variable[t]
membrane_potential[t+1] = membrane_potential[t] + (dv + I_applied)*dt
du = a*(b*membrane_potential[t] - recovery_variable[t])
recovery_variable[t+1] = recovery_variable[t] + dt*du
else:
membrane_potential[t] = 35
membrane_potential[t+1] = c
recovery_variable[t+1] = recovery_variable[t] + d
time_vector = dt * np.arange(-1, T-1)
plt.figure()
plt.plot(time_vector, membrane_potential)
plt.plot(time_vector, current_axis, 'r')
plt.xlabel('Time [ms]')
plt.xlim([0, 950])
plt.ylabel('Potential V [mV]')
plt.legend('Membrane potential', 'Excitation current', loc = 'best')
plt.title('Neuron Type: {}'.format(title))
plt.show()
if __name__ == "__main__":
neuron_types = {'CH' :'Chattering CH', 'LTS' : 'Low-threshold spikes LTS', 'RS' : 'Regular Spiking RS', 'FS' : 'Fast Spiking FS' }
for neu_type in neuron_types.keys() :
continous_impulse_encoding(neu_type, neuron_types[neu_type], 5)