forked from rabbit721/QPPNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpg_snapshot.py
384 lines (338 loc) · 14.2 KB
/
pg_snapshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import argparse
import collections
from pprint import pprint
import psycopg
class PgSnapshot:
"""
Attributes
----------
rel_names : List[str]
Relation names.
index_names : List[str]
Index names.
rel_attr_list_dict : Dict[str, List[str]]
Map from a relation name to a list of its attributes.
"""
def __init__(self, db_name, db_user, db_pass):
# TODO(WAN): These constants are copied over from the original QPPNet reimplementation.
# Specifically, they work for TPC-H, but may need tweaking for completion.
self.all_dicts = [
"Aggregate",
"Gather Merge",
"Sort",
"Seq Scan",
"Index Scan",
"Index Only Scan",
"Bitmap Heap Scan",
"Bitmap Index Scan",
"Limit",
"Hash Join",
"Hash",
"Nested Loop",
"Materialize",
"Merge Join",
"Subquery Scan",
"Gather",
]
self.join_types = ["semi", "inner", "anti", "full", "right"]
self.parent_rel_types = ["inner", "outer", "subquery"]
self.sort_algos = ["quicksort", "top-n heapsort"]
self.aggreg_strats = ["plain", "sorted", "hashed"]
self._snapshot_db(db_name, db_user, db_pass)
def _snapshot_db(self, db_name, db_user, db_pass):
"""
Take a snapshot of the database state, populating internal fields.
Parameters
----------
db_name : str
Name of database to connect to.
db_user : str
Database user to connect as.
db_pass : str
Password for the specified database and user.
"""
with psycopg.connect(
f"dbname={db_name} user={db_user} password={db_pass}"
) as conn:
with conn.cursor() as cursor:
rel_names = []
cursor.execute(
"SELECT schemaname, tablename FROM pg_tables WHERE schemaname = 'public';"
)
for result in cursor.fetchall():
schemaname, tablename = result
rel_names.append(tablename)
index_names = []
cursor.execute(
"SELECT tablename, indexname FROM pg_indexes WHERE tablename NOT LIKE 'pg_%' AND indexname NOT LIKE '%_pkey';"
)
for result in cursor.fetchall():
tablename, indexname = result
index_names.append(indexname)
rel_attr_list_dict = {}
for rel in rel_names:
attrs = []
cursor.execute(
f"SELECT attname FROM pg_attribute WHERE attrelid = '{rel}'::regclass::oid "
"AND attnum > 0 ORDER BY attnum;"
)
for result in cursor.fetchall():
attname = result[0]
attrs.append(attname)
rel_attr_list_dict[rel] = attrs
med_dict, min_dict, max_dict = {}, {}, {}
def convert(x):
# Convert numerical attributes to floats. Otherwise, return 0.
try:
return float(x)
except:
return 0
for rel in rel_attr_list_dict:
attrs = rel_attr_list_dict[rel]
mins = ", ".join(f"min({attr})" for attr in attrs)
cursor.execute(f"SELECT {mins} FROM {rel};")
result = cursor.fetchone()
min_dict[rel] = [convert(res) for res in result]
maxs = ", ".join(f"max({attr})" for attr in attrs)
cursor.execute(f"SELECT {maxs} FROM {rel};")
result = cursor.fetchone()
max_dict[rel] = [convert(res) for res in result]
meds = ", ".join(
f"percentile_disc(0.5) within group (order by {attr})"
for attr in attrs
)
cursor.execute(f"SELECT {meds} FROM {rel};")
result = cursor.fetchone()
med_dict[rel] = [convert(res) for res in result]
attr_val_dict = {"min": min_dict, "max": max_dict, "med": med_dict}
max_num_attr = max(len(attrs) for attrs in rel_attr_list_dict.values())
self.num_rel = len(rel_names)
self.num_index = len(index_names)
self.rel_names = rel_names
self.index_names = index_names
self.rel_attr_list_dict = rel_attr_list_dict
self.attr_val_dict = attr_val_dict
self.max_num_attr = max_num_attr
all_input_funcs = {
"Hash Join": self.get_join_input,
"Merge Join": self.get_join_input,
"Seq Scan": self.get_scan_input,
"Index Scan": self.get_index_scan_input,
"Index Only Scan": self.get_index_scan_input,
"Bitmap Heap Scan": self.get_scan_input,
"Bitmap Index Scan": self.get_bitmap_index_scan_input,
"Sort": self.get_sort_input,
"Hash": self.get_hash_input,
"Aggregate": self.get_aggreg_input,
}
self.all_input_funcs = collections.defaultdict(
lambda: self.get_basics, all_input_funcs
)
len_basics = 3
len_rel_vec = self.num_rel
len_rel_attr_vec = self.max_num_attr * 3 # min, median, max
len_index_vec = self.num_index
len_sort_key_vec = self.num_rel * self.max_num_attr
# TODO(WAN): Doublecheck the +32's.
dim_dict = {
"Seq Scan": len_basics + len_rel_vec + len_rel_attr_vec,
"Index Scan": len_basics
+ len_rel_vec
+ len_rel_attr_vec
+ len_index_vec
+ 1,
"Index Only Scan": len_basics
+ len_rel_vec
+ len_rel_attr_vec
+ len_index_vec
+ 1,
"Bitmap Heap Scan": len_basics + len_rel_vec + len_rel_attr_vec + 32,
"Bitmap Index Scan": len_basics + len_index_vec,
"Sort": len_basics + len_sort_key_vec + len(self.sort_algos) + 32,
"Hash": len_basics + 1 + 32,
"Hash Join": len_basics
+ len(self.join_types)
+ len(self.parent_rel_types)
+ 32 * 2,
"Merge Join": len_basics
+ len(self.join_types)
+ len(self.parent_rel_types)
+ 32 * 2,
"Aggregate": len_basics + len(self.aggreg_strats) + 1 + 32,
"Nested Loop": len_basics + 32 * 2,
"Limit": len_basics + 32,
"Subquery Scan": len_basics + 32,
"Materialize": len_basics + 32,
"Gather Merge": len_basics + 32,
"Gather": len_basics + 32,
}
self.dim_dict = dim_dict
def get_basics(self, plan_dict):
# Return plan width, plan rows, total cost.
# TODO(WAN): there used to be a comment saying that we
# "need to normalize Plan Width, Plan Rows, Total Cost, Hash Bucket".
# Do we still need to do this?
return [
plan_dict["Plan Width"],
plan_dict["Plan Rows"],
plan_dict["Total Cost"],
]
def get_rel_one_hot(self, rel_name):
# One-hot encodes the relation.
arr = [0] * len(self.rel_names)
arr[self.rel_names.index(rel_name)] = 1
return arr
def get_index_one_hot(self, index_name):
# One-hot encodes the index.
arr = [0] * len(self.index_names)
arr[self.index_names.index(index_name)] = 1
return arr
def get_rel_attr_one_hot(self, rel_name, filter_line):
# Get the concatenation of the min, median, and max vectors for the
# specified relation with the specified attribute.
# TODO(WAN): Why is filter_line a filter instead of an equality test?
# This seems hacky considering that QPPNet cannot support schema change anyway?
attr_list = self.rel_attr_list_dict[rel_name]
med_vec, min_vec, max_vec = (
[0] * self.max_num_attr,
[0] * self.max_num_attr,
[0] * self.max_num_attr,
)
for idx, attr in enumerate(attr_list):
if attr in filter_line:
med_vec[idx] = self.attr_val_dict["med"][rel_name][idx]
min_vec[idx] = self.attr_val_dict["min"][rel_name][idx]
max_vec[idx] = self.attr_val_dict["max"][rel_name][idx]
return min_vec + med_vec + max_vec
def get_scan_input(self, plan_dict):
# Get the input to the scan operator.
# Components:
# Basics
# One-hot relation
# Min/median/max of attribute, in order: Filter, Recheck Cond, else default 0 0 0
assert plan_dict["Node Type"] in [
"Seq Scan",
"Bitmap Heap Scan",
], f"Invalid plan dict: {plan_dict}"
rel_vec = self.get_rel_one_hot(plan_dict["Relation Name"])
try:
rel_attr_vec = self.get_rel_attr_one_hot(
plan_dict["Relation Name"], plan_dict["Filter"]
)
except:
try:
rel_attr_vec = self.get_rel_attr_one_hot(
plan_dict["Relation Name"], plan_dict["Recheck Cond"]
)
except:
if "Filter" in plan_dict:
print("************************* default *************************")
print(plan_dict)
rel_attr_vec = [0] * self.max_num_attr * 3
return self.get_basics(plan_dict) + rel_vec + rel_attr_vec
def get_index_scan_input(self, plan_dict):
# Get the input to the index scan operator.
# Components:
# Basics
# One-hot relation
# Min/median/max of index condition, else default 0 0 0
# One-hot index
# 1 if scan direction is forward, else 0
assert plan_dict["Node Type"] in [
"Index Scan",
"Index Only Scan",
], f"Invalid plan dict: {plan_dict}"
rel_vec = self.get_rel_one_hot(plan_dict["Relation Name"])
index_vec = self.get_index_one_hot(plan_dict["Index Name"])
try:
rel_attr_vec = self.get_rel_attr_one_hot(
plan_dict["Relation Name"], plan_dict["Index Cond"]
)
except:
if "Index Cond" in plan_dict:
print(
"********************* default rel_attr_vec *********************"
)
print(plan_dict)
rel_attr_vec = [0] * self.max_num_attr * 3
res = (
self.get_basics(plan_dict)
+ rel_vec
+ rel_attr_vec
+ index_vec
+ [1 if plan_dict["Scan Direction"] == "Forward" else 0]
)
return res
def get_bitmap_index_scan_input(self, plan_dict):
# Get the input to the bitmap index scan operator.
# Components:
# Basics
# One-hot index
assert (
plan_dict["Node Type"] == "Bitmap Index Scan"
), f"Invalid plan dict: {plan_dict}"
index_vec = self.get_index_one_hot(plan_dict["Index Name"])
return self.get_basics(plan_dict) + index_vec
def get_hash_input(self, plan_dict):
# Components:
# Basics
# Hash buckets
assert plan_dict["Node Type"] == "Hash", f"Invalid plan dict: {plan_dict}"
return self.get_basics(plan_dict) + [plan_dict["Hash Buckets"]]
def get_join_input(self, plan_dict):
# Components:
# One-hot join type.
# One-hot parent relation type if applicable, else 0 0 0.
assert plan_dict["Node Type"] in [
"Hash Join",
"Merge Join",
], f"Invalid plan dict: {plan_dict}"
type_vec = [0] * len(self.join_types)
type_vec[self.join_types.index(plan_dict["Join Type"].lower())] = 1
par_rel_vec = [0] * len(self.parent_rel_types)
if "Parent Relationship" in plan_dict:
par_rel_vec[
self.parent_rel_types.index(plan_dict["Parent Relationship"].lower())
] = 1
return self.get_basics(plan_dict) + type_vec + par_rel_vec
def get_sort_key_input(self, plan_dict):
# Components:
# Return a num_rel * max_num_attr long vector,
# (basically padding each relation to have max_num_attr),
# where all the sort keys in the input plan are set to 1.
kys = plan_dict["Sort Key"]
one_hot = [0] * (self.num_rel * self.max_num_attr)
for key in kys:
key = key.replace("(", " ").replace(")", " ")
for subkey in key.split(" "):
if subkey != " " and "." in subkey:
rel_name, attr_name = subkey.split(" ")[0].split(".")
if rel_name in self.rel_names:
one_hot[
self.rel_names.index(rel_name) * self.max_num_attr
+ self.rel_attr_list_dict[rel_name].index(attr_name.lower())
] = 1
return one_hot
def get_sort_input(self, plan_dict):
# Components:
# Basics.
# Sort key input.
# Sort method.
assert plan_dict["Node Type"] == "Sort", f"Invalid plan dict: {plan_dict}"
sort_meth = [0] * len(self.sort_algos)
if "Sort Method" in plan_dict:
if "external" not in plan_dict["Sort Method"].lower():
sort_meth[self.sort_algos.index(plan_dict["Sort Method"].lower())] = 1
return (
self.get_basics(plan_dict) + self.get_sort_key_input(plan_dict) + sort_meth
)
def get_aggreg_input(self, plan_dict):
# Components:
# Basics.
# Aggregation strategy.
# 1 if parallel aware, else 0.
assert plan_dict["Node Type"] == "Aggregate", f"Invalid plan dict: {plan_dict}"
strat_vec = [0] * len(self.aggreg_strats)
strat_vec[self.aggreg_strats.index(plan_dict["Strategy"].lower())] = 1
partial_mode_vec = [0] if plan_dict["Parallel Aware"] == "false" else [1]
return self.get_basics(plan_dict) + strat_vec + partial_mode_vec