Download the dataset here.
Extract them in the same folder as Dockerfile.
docker build -t slam:dsp_slam
docker run -it -e "DISPLAY=$DISPLAY" -e "QT_X11_NO_MITSHM=1" -e "XAUTHORITY=$XAUTH" -v "/tmp/.X11-unix:/tmp/.X11-unix:rw" -v ${PWD}/:/data --runtime=nvidia --net=host --ipc=host --privileged slam:dsp_slam
# Build additional dependencies inside docker container (It's good to commit the container as image once this stage is done)
./build_cuda113.sh --build-dependencies --create-conda-env
# Run
mkdir map
vim configs/config_kitti.json (See below)
./dsp_slam Vocabulary/ORBvoc.bin ./configs/KITTI04-12.yaml /data/07 map
{
"data_type": "KITTI",
"detect_online": true,
"path_label_3d": "/data/07/labels/pointpillars_labels",
"path_label_2d": "/data/07/labels/maskrcnn_labels",
"Detector3D": {
"config_path": "configs/config_pointpillars.py",
"weight_path": "/data/weights/pointpillars/model.pth"
},
"Detector2D": {
"config_path": "configs/config_maskrcnn.py",
"weight_path": "/data/weights/maskrcnn/model.pth"
},
"min_bb_area": 1600,
"min_mask_area": 1000,
"downsample_ratio": 4.0,
"num_lidar_max": 250,
"num_lidar_min": 10,
"DeepSDF_DIR": "/data/weights/deepsdf/cars_64",
"voxels_dim": 32,
"optimizer": {
"code_len": 64,
"num_depth_samples": 50,
"cut_off_threshold": 0.01,
"joint_optim": {
"k1": 1.0,
"k2": 100.0,
"k3": 0.25,
"k4": 1e7,
"b1": 0.20,
"b2": 0.025,
"num_iterations": 10,
"learning_rate": 1.0,
"scale_damping": 1.0
},
"pose_only_optim": {
"num_iterations": 5,
"learning_rate": 1.0
}
},
"viewer": {
"distance": 150.0,
"tilt": 45.0,
"frame_size": 10.0
}
}