下面的范例使用TensorFlow的低阶API实现线性回归模型。
低阶API主要包括张量操作,计算图和自动微分。
import tensorflow as tf
#打印时间分割线
@tf.function
def printbar():
ts = tf.timestamp()
today_ts = ts%(24*60*60)
hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24)
minite = tf.cast((today_ts%3600)//60,tf.int32)
second = tf.cast(tf.floor(today_ts%60),tf.int32)
def timeformat(m):
if tf.strings.length(tf.strings.format("{}",m))==1:
return(tf.strings.format("0{}",m))
else:
return(tf.strings.format("{}",m))
timestring = tf.strings.join([timeformat(hour),timeformat(minite),
timeformat(second)],separator = ":")
tf.print("=========="*8,end = "")
tf.print(timestring)
#样本数量
n = 400
# 生成测试用数据集
X = tf.random.uniform([n,2],minval=-10,maxval=10)
w0 = tf.constant([[2.0],[-1.0]])
b0 = tf.constant(3.0)
Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0) # @表示矩阵乘法,增加正态扰动
#使用动态图调试
w = tf.Variable(tf.random.normal(w0.shape))
b = tf.Variable(0.0)
def train(epoches):
for epoch in tf.range(1,epoches+1):
with tf.GradientTape() as tape:
#正向传播求损失
Y_hat = X@w + b
loss = tf.squeeze(tf.transpose(Y-Y_hat)@(Y-Y_hat))/(2.0*n)
# 反向传播求梯度
dloss_dw,dloss_db = tape.gradient(loss,[w,b])
# 梯度下降法更新参数
w.assign(w - 0.001*dloss_dw)
b.assign(b - 0.001*dloss_db)
if epoch%1000 == 0:
printbar()
tf.print("epoch =",epoch," loss =",loss,)
tf.print("w =",w)
tf.print("b =",b)
tf.print("")
train(5000)
##使用autograph机制转换成静态图加速
w = tf.Variable(tf.random.normal(w0.shape))
b = tf.Variable(0.0)
@tf.function
def train(epoches):
for epoch in tf.range(1,epoches+1):
with tf.GradientTape() as tape:
#正向传播求损失
Y_hat = X@w + b
loss = tf.squeeze(tf.transpose(Y-Y_hat)@(Y-Y_hat))/(2.0*n)
# 反向传播求梯度
dloss_dw,dloss_db = tape.gradient(loss,[w,b])
# 梯度下降法更新参数
w.assign(w - 0.001*dloss_dw)
b.assign(b - 0.001*dloss_db)
if epoch%1000 == 0:
printbar()
tf.print("epoch =",epoch," loss =",loss,)
tf.print("w =",w)
tf.print("b =",b)
tf.print("")
train(5000)
如果对本书内容理解上有需要进一步和作者交流的地方,欢迎在公众号"Python与算法之美"下留言。作者时间和精力有限,会酌情予以回复。
也可以在公众号后台回复关键字:加群,加入读者交流群和大家讨论。