-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnmda.go
153 lines (128 loc) · 5.43 KB
/
nmda.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// Copyright (c) 2020, The Emergent Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package chans
import "cogentcore.org/core/math32"
//gosl:start chans
// NMDAParams control the NMDA dynamics, based on Jahr & Stevens (1990) equations
// which are widely used in models, from Brunel & Wang (2001) to Sanders et al. (2013).
// The overall conductance is a function of a voltage-dependent postsynaptic factor based
// on Mg ion blockage, and presynaptic Glu-based opening, which in a simple model just
// increments
type NMDAParams struct {
// overall multiplier for strength of NMDA current -- multiplies GnmdaSyn to get net conductance.
Gbar float32 `default:"0,0.006,0.007"`
// decay time constant for NMDA channel activation -- rise time is 2 msec and not worth extra effort for biexponential. 30 fits the Urakubo et al (2008) model with ITau = 100, but 100 works better in practice is small networks so far.
Tau float32 `default:"30,50,100,200,300"`
// decay time constant for NMDA channel inhibition, which captures the Urakubo et al (2008) allosteric dynamics (100 fits their model well) -- set to 1 to eliminate that mechanism.
ITau float32 `default:"1,100"`
// magnesium ion concentration: Brunel & Wang (2001) and Sanders et al (2013) use 1 mM, based on Jahr & Stevens (1990). Urakubo et al (2008) use 1.5 mM. 1.4 with Voff = 5 works best so far in large models, 1.2, Voff = 0 best in smaller nets.
MgC float32 `default:"1:1.5"`
// offset in membrane potential in biological units for voltage-dependent functions. 5 corresponds to the -65 mV rest, -45 threshold of the Urakubo et al (2008) model. 5 was used before in a buggy version of NMDA equation -- 0 is new default.
Voff float32 `default:"0"`
// rate = 1 / tau
Dt float32 `display:"-" json:"-" xml:"-"`
// rate = 1 / tau
IDt float32 `display:"-" json:"-" xml:"-"`
// MgFact = MgC / 3.57
MgFact float32 `display:"-" json:"-" xml:"-"`
}
func (np *NMDAParams) Defaults() {
np.Gbar = 0.006
np.Tau = 100
np.ITau = 1 // off by default, as it doesn't work in actual axon models..
np.MgC = 1.4
np.Voff = 0
np.Update()
}
func (np *NMDAParams) Update() {
np.Dt = 1 / np.Tau
np.IDt = 1 / np.ITau
np.MgFact = np.MgC / 3.57
}
func (np *NMDAParams) ShouldShow(field string) bool {
switch field {
case "Gbar":
return true
default:
return np.Gbar > 0
}
}
// MgGFromVbio returns the NMDA conductance as a function of biological membrane potential
// based on Mg ion blocking
// Using parameters from Brunel & Wang (2001)
// see also Urakubo et al (2008)
func (np *NMDAParams) MgGFromVbio(vbio float32) float32 {
vbio += np.Voff
if vbio >= 0 {
return 0
}
return -vbio / (1.0 + np.MgFact*math32.FastExp(-0.062*vbio))
}
// MgGFromV returns the NMDA conductance as a function of normalized membrane potential
// based on Mg ion blocking
func (np *NMDAParams) MgGFromV(v float32) float32 {
return np.MgGFromVbio(VToBio(v))
}
// note on a bug present in version prior to 4/27/2023, re
// eliminating div 0 at 0, and numerical "fuzz" around 0:
// Urakubo 2008 implementation in genesis
// http://kurodalab.bs.s.u-tokyo.ac.jp/info/STDP/ has this:
// if ({ abs {v} } < 0.5)
// max = {-1 / 0.0756 * {1 - 0.0378 * {v}}}
// and this:
// if (V > -0.1 & V < 0.1){
// channel->Vca = -1/0.0756 + 0.5*V;
// }
// this was initially mis-coded as this without the minus sign:
// if vbio > -0.1 && vbio < 0.1 {
// return 1.0 / (0.0756 + 0.5*vbio)
// }
// CaFromVbio returns the calcium current factor as a function of biological membrane
// potential -- this factor is needed for computing the calcium current * MgGFromV.
// This is the same function used in VGCC for their conductance factor.
// based on implementation in Urakubo et al (2008).
// http://kurodalab.bs.s.u-tokyo.ac.jp/info/STDP/
func (np *NMDAParams) CaFromVbio(vbio float32) float32 {
vbio += np.Voff
if vbio > -0.5 && vbio < 0.5 { // this eliminates div 0 at 0, and numerical "fuzz" around 0
return 1.0 / (0.0756 * (1 + 0.0378*vbio))
}
return -vbio / (1.0 - math32.FastExp(0.0756*vbio))
}
// CaFromV returns the calcium current factor as a function of normalized membrane
// potential -- this factor is needed for computing the calcium current * MgGFromV
func (np *NMDAParams) CaFromV(v float32) float32 {
return np.CaFromVbio(VToBio(v))
}
// VFactors returns MgGFromV and CaFromV based on normalized membrane potential.
// Just does the voltage conversion once.
func (np *NMDAParams) VFactors(v float32, mgg, cav *float32) {
vbio := VToBio(v)
*mgg = np.MgGFromVbio(vbio)
*cav = np.CaFromVbio(vbio)
}
// NMDASyn returns the updated synaptic NMDA Glu binding
// based on new raw spike-driven Glu binding.
func (np *NMDAParams) NMDASyn(nmda, raw float32) float32 {
return nmda + raw - np.Dt*nmda
}
// Gnmda returns the NMDA net conductance from nmda Glu binding and Vm
// including the GBar factor
func (np *NMDAParams) Gnmda(nmda, vm float32) float32 {
return np.Gbar * np.MgGFromV(vm) * nmda
}
// SnmdaFromSpike updates sender-based NMDA channel opening based on neural spiking
// using the inhibition and decay factors. These dynamics closely match the
// Urakubo et al (2008) allosteric NMDA receptor behavior, with ITau = 100, Tau = 30
func (np *NMDAParams) SnmdaFromSpike(spike float32, snmdaO, snmdaI *float32) {
if spike > 0 {
inh := (1 - *snmdaI)
*snmdaO += inh * (1 - *snmdaO)
*snmdaI += inh
} else {
*snmdaO -= np.Dt * *snmdaO
*snmdaI -= np.IDt * *snmdaI
}
}
//gosl:end chans