-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsyntax.tex~
478 lines (390 loc) · 20.9 KB
/
syntax.tex~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
\chapter{Context Free Syntax}
The Haskell 2010 report is the current official specification of the Haskell language. %https://www.haskell.org/onlinereport/haskell2010/
The grammar specified in section 10.5 of the Haskell 2010 report is a specification of the expanded syntax of haskell.
%https://www.haskell.org/onlinereport/haskell2010/haskellch2.html#x7-210002.7
As specified in section 2.7, the expanded syntax of haskell specifies haskell programs when written using semicolons and braces. However, these can be omitted in a real haskell program. The compiler will then utilize layout rules for certain grammar structures instead. These are specified in section 10.3
%https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-17800010.3
The parser for this project does not implement these layout rules and instead only can parse the expanded, layout insensitive syntax of haskell. It would require another script to convert a program written using the layout sensitive syntax into the expanded syntax in order to parse the program.
Haskell has a context free grammar.
%https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-18000010.5
Section 10.1 specifies the notation used in the grammar.
%https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-17600010.1
The notation of 10.1 are always in bold in the grammar. So
\begin{lstlisting}
qvarid -> [ modid . ] varid
\end{lstlisting}
Means that
\begin{lstlisting}
modid .
\end{lstlisting}
is optional, and the brackets
\begin{lstlisting}
[ ]
\end{lstlisting}
are not part of the haskell code, but the period
\begin{lstlisting}
.
\end{lstlisting}
is part of the haskell code. Any symbol that is not in bold needs to be written in the program in order to parse correctly.
There are a lot of parts of the grammar that were tricky for me to implement in K. For instance, a sort definition with an optional part could be just written using a pipe
\begin{lstlisting}
|
\end{lstlisting}
in the K syntax. So
\begin{lstlisting}
qvarid -> [ modid . ] varid
\end{lstlisting}
Is written in my K syntax as
\begin{lstlisting}
syntax QVarId ::= VarId | ModId "." VarId [klabel('qVarIdCon)]
\end{lstlisting}
However, an issue arises when you have something written like
\begin{lstlisting}
data [context =>] simpletype [= constrs] [deriving]
\end{lstlisting}
As an option for the definition of the topdecl sort. What I did was, for each optional part, replace the optional part with a new sort. For instance, I replaced
\begin{lstlisting}
[ context => ]
\end{lstlisting}
with a new sort called OptContext. Then I just specified
\begin{lstlisting}
syntax OptContext ::= Context "=>" | "" [onlyLabel, klabel('emptyContext)]
\end{lstlisting}
\begin{lstlisting}
// Syntax from haskell 2010 Report
// https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-17500010
module HASKELL-SYNTAX
syntax Integer ::= Token{([0-9]+)
| (([0][o]|[0][O])[0-7]+)
| (([0][x] | [0][X])[0-9a-fA-F]+)} [onlyLabel]
syntax CusFloat ::= Token{([0-9]+[\.][0-9]+([e E][\+\-]?[0-9]+)?)
|([0-9]+[e E][\+\-]?[0-9]+)} [onlyLabel]
syntax CusChar ::= Token{[\'](~[\'\\\&])[\']} [onlyLabel]
syntax CusString ::= Token{[\"](~[\"\\]*)[\"]} [onlyLabel]
\end{lstlisting}
\begin{lstlisting}
syntax VarId ::= Token{[a-z\_][a-z A-Z\_0-9\']*} [onlyLabel] | "size" [onlyLabel]
\end{lstlisting}
I ran into another issue where a program with a variable called ‘size’ did not parse. I found out that this is because ‘size’ is a k keyword. So I just specified that a variable could be a variable token, or “size”.
\begin{lstlisting}
syntax ConId ::= Token{[A-Z][a-zA-Z \_0-9\']*} [onlyLabel]
syntax VarSym ::= Token{
([\! \# \$ \% \& \* \+ \/ \> \? \^][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]*)
|[\-] | [\.]
|([\.][\! \# \$ \% \& \* \+ \/ \< \= \> \? \@ \\ \^ \| \- \~ \:][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]*)
| ([\-][\! \# \$ \% \& \* \+ \. \/ \< \= \? \@ \\ \^ \| \~ \:][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \~ \:]*)
| ([\@][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]+)
| ([\~][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]+)
| ([\\][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]+)
| ([\|][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]+)
| ([\:][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]*)
| ([\<][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \~ \:][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]*)
| ([\=][\! \# \$ \% \& \* \+ \. \/ \< \= \? \@ \\ \^ \| \~ \:][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]*)} [onlyLabel]
syntax ConSym ::= Token{[\:][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~][\! \# \$ \% \& \* \+ \. \/ \< \= \> \? \@ \\ \^ \| \- \~ \:]*} [onlyLabel]
syntax IntFloat ::= "(" Integer ")" [bracket] //NOT OFFICIAL SYNTAX
| "(" CusFloat ")" [bracket]
\end{lstlisting}
I ran into an issue where floats and integers did not parse correctly. They caused parsing errors due to ambiguity of parsing. For example the number 123.45 had ambiguity where the parser did not know if 1, 12, or 123 where integers, and if 5 was an integer, or if the entire thing was one float. Normally in K, different tokens are separated with whitespaces. However, for some reason the parser had difficulty here. Initially, I added a workaround by requiring parentheses around each integer and floating point.
f y z (2)
This fixed the issue.
\begin{lstlisting}
syntax Literal ::= IntFloat | CusChar | CusString
syntax TyCon ::= ConId
syntax ModId ::= ConId | ConId "." ModId [klabel('conModId)]
syntax QTyCon ::= TyCon | ModId "." TyCon [klabel('conTyCon)]
syntax QVarId ::= VarId | ModId "." VarId [klabel('qVarIdCon)]
syntax QVarSym ::= VarSym | ModId "." VarSym [klabel('qVarSymCon)]
syntax QConSym ::= ConSym | ModId "." ConSym [klabel('qConSymCon)]
/* syntax QTyCls ::= QTyCon
syntax TyCls ::= ConId
*/
syntax TyVars ::= List{TyVar, ""} [klabel('typeVars)] //used in SimpleType syntax
syntax TyVar ::= VarId
syntax TyVarTuple ::= TyVar "," TyVar [klabel('twoTypeVarTuple)]
| TyVar "," TyVarTuple [klabel('typeVarTupleCon)]
syntax Con ::= ConId | "(" ConSym ")" [klabel('conSymBracket)]
syntax Var ::= VarId | "(" VarSym ")" [klabel('varSymBracket)]
syntax QVar ::= QVarId | "(" QConSym ")" [klabel('qVarBracket)]
syntax QCon ::= QTyCon | "(" GConSym ")" [klabel('gConBracket)]
syntax QConOp ::= GConSym | "`" QTyCon "`" [klabel('qTyConQuote)]
syntax QVarOp ::= QVarSym | "`" QVarId "`" [klabel('qVarIdQuote)]
syntax VarOp ::= VarSym | "`" VarId "`" [klabel('varIdQuote)]
syntax ConOp ::= ConSym | "`" ConId "`" [klabel('conIdQuote)]
syntax GConSym ::= ":" | QConSym
syntax Vars ::= Var
| Var "," Vars [klabel('varCon)]
syntax VarsType ::= Vars "::" Type [klabel('varAssign)]
syntax Ops ::= Op
| Op "," Ops [klabel('opCon)]
syntax Fixity ::= "infixl" | "infixr" | "infix"
syntax Op ::= VarOp | ConOp
syntax CQName ::= Var | Con | QVar
/* syntax QConId ::= ConId | ModId "." ConId */
syntax QOp ::= QVarOp | QConOp
\end{lstlisting}
\begin{lstlisting}
syntax ModuleName ::= "module" ModId [klabel('moduleName)]
syntax Module ::= ModuleName "where" Body [klabel('module)]
| ModuleName Exports "where" Body [klabel('moduleExp)]
| Body [klabel('moduleBody)]
syntax Body ::= "{" ImpDecls ";" TopDecls "}" [klabel('bodyimpandtop)]
| "{" ImpDecls "}" [klabel('bodyimpdecls)]
| "{" TopDecls "}" [klabel('bodytopdecls)]
syntax ImpDecls ::= List{ImpDecl, ";"} [klabel('impDecls)]
\end{lstlisting}
The sort that contains all the other sorts is a module. A module represents one complete Haskell program. It can have either a name and a body, a name and a body with exports, or just a body.
\begin{lstlisting}
module Foo where
{import Bar
}
\end{lstlisting}
This example program has a Module with only ImpDecls. It has one ImpDecl.
\begin{lstlisting}
import Bar
\end{lstlisting}
This example program has a Module with no name and only ImpDecls. It has one ImpDecl.
\begin{lstlisting}
syntax Exports ::= "(" ExportList OptComma ")"
syntax ExportList ::= List{Export, ","}
syntax Export ::= QVar
| QTyCon OptCQList
| ModuleName
//optional cname list
syntax OptCQList ::= "(..)"
| "(" CQList ")" [klabel('cqListBracket)]
//Liyi: a check needs to place in preprocessing to check
//if the CQList is a cname list or a qvar list.
| "" [onlyLabel, klabel('emptyOptCNameList)]
syntax CQList ::= List{CQName, ","}
syntax ImpDecl ::= "import" OptQualified ModId OptAsModId OptImpSpec [klabel('impDecl)]
| "" [onlyLabel, klabel('emptyImpDecl)]
syntax OptQualified ::= "qualified"
| "" [onlyLabel, klabel('emptyQualified)]
syntax OptAsModId ::= "as" ModId
| "" [onlyLabel, klabel('emptyOptAsModId)]
syntax OptImpSpec ::= ImpSpec
| "" [onlyLabel, klabel('emptyOptImpSpec)]
syntax ImpSpecKey ::= "(" ImportList OptComma ")"
syntax ImpSpec ::= ImpSpecKey
| "hiding" ImpSpecKey
syntax ImportList ::= List{Import, ","}
syntax Import ::= Var
| TyCon CQList
\end{lstlisting}
An import is another module that this module depends on.
\begin{lstlisting}
syntax TopDecls ::= List{TopDecl, ";"} [klabel('topdeclslist)]
syntax TopDecl ::= Decl [klabel('topdecldecl)]
> "type" SimpleType "=" Type [klabel('type)]
| "data" OptContext SimpleType OptConstrs OptDeriving [klabel('data)]
| "newtype" OptContext SimpleType "=" NewConstr OptDeriving [klabel('newtype)]
| "class" OptContext ConId TyVar OptCDecls [klabel('class)]
| "instance" OptContext QTyCon Inst OptIDecls [klabel('instance)]
| "default" Types [klabel('default)]
| "foreign" FDecl [klabel('foreign)]
\end{lstlisting}
The main types of expressions in Haskell are TopDecls - Top Declarations. A top declaration can either be a type, a data, a newtype, a class, an instance, a default, a foreign, or an arbitrary declaration.
\begin{lstlisting}
syntax FDecl ::= "import" CallConv CusString Var "::" FType
| "import" CallConv Safety CusString Var "::" FType
| "export" CallConv Safety CusString Var "::" FType
//Liyi: fdecl needs to use special function in preprocessing
// to get the actually elements from the impent and expent from the CusString
//did string analysis
syntax Safety ::= "unsafe" | "safe"
syntax CallConv ::= "ccall" | "stdcall" | "cplusplus" | "jvm" | "dotnet"
syntax FType ::= FrType
| FaType "->" FType // unsure about this one syntax is ambiguous UNFINISHED
syntax FrType ::= FaType
| "()"
syntax FaType ::= QTyCon ATypeList
//define declaration.
syntax OptDecls ::= "where" Decls | "" [onlyLabel, klabel('emptyOptDecls)]
syntax Decls ::= "{" DeclsList "}" [klabel('decls)]
syntax DeclsList ::= List{Decl, ";"} [klabel('declsList)]
syntax Decl ::= GenDecl
| FunLhs Rhs [klabel('declFunLhsRhs)]
| Pat Rhs [klabel('declPatRhs)]
\end{lstlisting}
Any sort that starts with 'Opt' means that this is optional. In K something can be made optional by declaring the necessary constructors or nothing.
A Decl is any general declaration. So something like
\begin{lstlisting}
f x = x + 2
\end{lstlisting}
is a Decl.
\begin{lstlisting}
syntax OptCDecls ::= "where" CDecls | "" [onlyLabel, klabel('emptyOptCDecls)]
syntax CDecls ::= "{" CDeclsList "}"
syntax CDeclsList ::= List{CDecl, ";"}
syntax CDecl ::= GenDecl
| FunLhs Rhs
| Var Rhs
syntax OptIDecls ::= "where" IDecls | "" [onlyLabel, klabel('emptyOptIDecls)]
syntax IDecls ::= "{" IDeclsList "}"
syntax IDeclsList ::= List{IDecl, ";"} [klabel('ideclslist)]
syntax IDecl ::= FunLhs Rhs [klabel('cdeclFunLhsRhs)]
| Var Rhs [klabel('cdeclVarRhs)]
| "" [onlyLabel, klabel('emptyIDecl)]
syntax GenDecl ::= VarsType
| Vars "::" Context "=>" Type [klabel('genAssignContext)]
| Fixity Ops
| Fixity Integer Ops
| "" [onlyLabel, klabel('emptyGenDecl)]
//three optional data type for the TopDecl data operator.
//deriving data type
syntax OptDeriving ::= Deriving | "" [onlyLabel, klabel('emptyDeriving)]
syntax Deriving ::= "deriving" DClass
| "deriving" "(" DClassList ")"
syntax DClassList ::= List{DClass, ","}
syntax DClass ::= QTyCon
syntax FunLhs ::= Var APatList [klabel('varApatList)]
| Pat VarOp Pat [klabel('patVarOpPat)]
| "(" FunLhs ")" APatList [klabel('funlhsApatList)]
syntax Rhs ::= "=" Exp OptDecls [klabel('eqExpOptDecls)]
| GdRhs OptDecls [klabel('gdRhsOptDecls)]
syntax GdRhs ::= Guards "=" Exp
| Guards "=" Exp GdRhs
syntax Guards ::= "|" GuardList
syntax GuardList ::= Guard | Guard "," GuardList [klabel('guardListCon)]
syntax Guard ::= Pat "<-" InfixExp
| "let" Decls
| InfixExp
//definition of exp
syntax Exp ::= InfixExp
> InfixExp "::" Type [klabel('expAssign)]
| InfixExp "::" Context "=>" Type [klabel('expAssignContext)]
syntax InfixExp ::= LExp
> "-" InfixExp [klabel('minusInfix)]
> LExp QOp InfixExp
syntax LExp ::= AExp
> "\\" APatList "->" Exp [klabel('lambdaFun)]
| "let" Decls "in" Exp [klabel('letIn)]
| "if" Exp OptSemicolon "then" Exp OptSemicolon "else" Exp [klabel('ifThenElse)]
| "case" Exp "of" "{" Alts "}" [klabel('caseOf)]
| "do" "{" Stmts "}" [klabel('doBlock)]
\end{lstlisting}
LExp is an important sort for the inference function. This is because LExp defines the different expression types which the inference function has specific rules for.
\begin{lstlisting}
syntax OptSemicolon ::= ";" | "" [onlyLabel, klabel('emptySemicolon)]
syntax OptComma ::= "," | "" [onlyLabel, klabel('emptyComma)]
syntax AExp ::= QVar [klabel('aexpQVar)]
| GCon [klabel('aexpGCon)]
| Literal [klabel('aexpLiteral)]
> AExp AExp [left, klabel('funApp)]
> QCon "{" FBindList "}"
| AExp "{" FBindList "}" //aexp cannot be qcon UNFINISHED
//Liyi: first, does not understand the syntax, it is the Qcon {FBindlist}
//or QCon? Second, place a check in preprosssing.
//and also check the Fbindlist here must be at least one argument
> "(" Exp ")" [bracket]
| "(" ExpTuple ")"
| "[" ExpList "]"
| "[" Exp OptExpComma ".." OptExp "]"
| "[" Exp "|" Quals "]"
| "(" InfixExp QOp ")"
| "(" QOp InfixExp ")" //qop cannot be - (minus) UNFINISHED
//Liyi: place a check here to check if QOp is a minus
\end{lstlisting}
AExp is also an import sort for the inference function. The main parts of AExp that the inference function cares about is QVar and GCon.
\begin{lstlisting}
syntax OptExpComma ::= "," Exp | "" [onlyLabel, klabel('emptyExpComma)]
syntax OptExp ::= Exp | "" [onlyLabel, klabel('emptyExp)]
syntax ExpList ::= Exp | Exp "," ExpList [right]
syntax ExpTuple ::= Exp "," Exp [right, klabel('twoExpTuple)]
| Exp "," ExpTuple [right, klabel('expTupleCon)]
//constr datatypes
syntax OptConstrs ::= "=" Constrs [klabel('nonemptyConstrs)] | "" [onlyLabel, klabel('emptyConstrs)]
syntax Constrs ::= Constr [klabel('singleConstr)] | Constr "|" Constrs [klabel('multConstr)]
syntax Constr ::= Con OptBangATypes [klabel('constrCon)] // (arity con = k, k ≥ 0) UNFINISHED
| SubConstr ConOp SubConstr
| Con "{" FieldDeclList "}"
syntax NewConstr ::= Con AType [klabel('newConstrCon)]
| Con "{" Var "::" Type "}"
syntax SubConstr ::= BType | "!" AType
syntax FieldDeclList ::= List{FieldDecl, ","}
syntax FieldDecl ::= VarsType
| Vars "::" "!" AType
syntax OptBangATypes ::= List{OptBangAType, " "} [klabel('optBangATypes)]
syntax OptBangAType ::= OptBang AType [klabel('optBangAType)]
syntax OptBang ::= "!" | "" [onlyLabel, klabel('emptyBang)]
syntax OptContext ::= Context "=>" | "" [onlyLabel, klabel('emptyContext)]
syntax Context ::= Class
| "(" Classes ")"
syntax Classes ::= List{Class, ","}
syntax SimpleClass ::= QTyCon TyVar [klabel('classCon)]
syntax Class ::= SimpleClass
| QTyCon "(" TyVar ATypeList ")"
//Liyi: a check in preprossing to check if the Atype list is empty
//it must have at least one item
//define type and simple type
syntax SimpleType ::= TyCon TyVars [klabel('simpleTypeCon)]
syntax Type ::= BType
| BType "->" Type [klabel('typeArrow)]
syntax BType ::= AType
| BType AType [klabel('baTypeCon)]
syntax ATypeList ::= List{AType, ""} [klabel('atypeList)]
syntax AType ::= GTyCon [klabel('atypeGTyCon)]
| TyVar [klabel('atypeTyVar)]
| "(" TypeTuple ")" [klabel('atypeTuple)]
| "[" Type "]" [klabel('tyList)]
| "(" Type ")" [bracket]
syntax TypeTuple ::= Type "," Type [right,klabel('twoTypeTuple)]
| Type "," TypeTuple [klabel('typeTupleCon)]
syntax Types ::= List{Type, ","}
syntax GConCommas ::= "," | "," GConCommas
syntax GConCommon ::= "()" | "[]" | "(" GConCommas ")" //was incorrect syntax
syntax GTyCon ::= QTyCon
| GConCommon
| "(->)"
syntax GCon ::= GConCommon
| QCon
//inst definition
syntax Inst ::= GTyCon
| "(" GTyCon TyVars ")" //TyVars must be distinct UNFINISHED
| "(" TyVarTuple ")" //TyVars must be distinct
| "[" TyVar "]" [klabel('tyVarList)]
| "(" TyVar "->" TyVar ")" //TyVars must be distinct
//pat definition
syntax Pat ::= LPat QConOp Pat
| LPat
syntax LPat ::= APat
| "-" IntFloat [klabel('minusPat)]
| GCon APatList [klabel('lpatCon)]//arity gcon = k UNFINISHED
syntax APatList ::= APat | APat APatList [klabel('apatCon)]
syntax APat ::= Var [klabel('apatVar)]
| Var "@" APat
| GCon
| QCon "{" FPats "}"
| Literal [klabel('apatLiteral)]
| "_"
| "(" Pat ")" [bracket]
| "(" PatTuple ")"
| "[" PatList "]"
| "~" APat
syntax PatTuple ::= Pat "," Pat [klabel('twoPatTuple)]
| Pat "," PatTuple [klabel('patTupleCon)]
syntax PatList ::= Pat
| Pat "," PatList [klabel('patListCon)]
syntax FPats ::= List{FPat, ","}
syntax FPat ::= QVar "=" Pat
//definition of quals
syntax Quals ::= Qual | Qual "," Quals [klabel('qualCon)]
syntax Qual ::= Pat "<-" Exp
| "let" Decls
| Exp
//definition of alts
syntax Alts ::= Alt | Alt ";" Alts
syntax Alt ::= Pat "->" Exp [klabel('altArrow)]
| Pat "->" Exp "where" Decls
| "" [onlyLabel, klabel('emptyAlt)]
//definition of stmts
syntax Stmts ::= StmtList Exp OptSemicolon
syntax StmtList ::= List{Stmt, ""}
syntax Stmt ::= Exp ";"
| Pat "<-" Exp ";"
| "let" Decls ";"
| ";"
//definition of fbind
syntax FBindList ::= List{FBind, ","}
syntax FBind ::= QVar "=" Exp
\end{lstlisting}