-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path06-Plot-Timseries.py
331 lines (233 loc) · 12.2 KB
/
06-Plot-Timseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python
# coding: utf-8
# In[10]:
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import gplately
from gplately import pygplates
import pandas as pd
from scipy import ndimage
from scipy.spatial import cKDTree
from matplotlib.lines import Line2D
from skimage import feature
# agegrid_dir = "/Users/ben/Dropbox/USyd/GPlates/"
# agegrid_filename = agegrid_dir+"SampleData/1Ga_model/v2/AgeGrids_0.5d/masked/seafloor_age_mask_{:.1f}Ma.nc"
# reconstruction_times = np.arange(0,1001)
# Call GPlately's DataServer from the download.py module
# gdownload = gplately.download.DataServer("Merdith2021")
agegrid_dir = "/Users/ben/Dropbox/USyd/GPlates/"
agegrid_filename = agegrid_dir+"slab_dip/Clennet_AgeGrids_0.1d_masked/seafloor_age_mask_{:.1f}Ma.nc"
LIP_filename = "/Users/ben/Dropbox/USyd/GPlates/SampleData/FeatureCollections/LargeIgneousProvinces_VolcanicProvinces/Johansson_etal_2018_VolcanicProvinces/Johansson_etal_2018_VolcanicProvinces_v2.gpmlz"
reconstruction_times = np.arange(0,171)
extent_global = [-180,180,-90,90]
# Call GPlately's DataServer from the download.py module
gdownload = gplately.download.DataServer("Clennett2020")
# Obtain all rotation files, topology features and static polygons from Muller et al. 2019
rotation_model, topology_features, static_polygons = gdownload.get_plate_reconstruction_files()
# In[4]:
model = gplately.PlateReconstruction(rotation_model, topology_features, static_polygons)
# Obtain geometry shapefiles with gdownload
coastlines, continents, COBs = gdownload.get_topology_geometries()
# Call the PlotTopologies object
gplot = gplately.plot.PlotTopologies(model, coastlines, continents, COBs)
# In[5]:
metal_dict = dict()
commodities = ['Cu (Mt)', 'Pb (Mt)', 'Zn (Mt)', 'Ni (Mt)']
sheets = ['PbZn-CD', 'PbZn-MVT', 'Cu-sed', 'Magmatic Ni', 'VMS', 'Cu-por', 'IOCG']
for sheet in sheets:
df = pd.read_excel('data/base_metal_deposit_compilation.xls', sheet_name=sheet, na_values='ND')
df = df[df['Age (Ga)'].notna()]
df = df[df['Age (Ga)']*1000 <= reconstruction_times.max()]
if df.shape[0] > 0:
metal_dict[sheet] = df
else:
sheets.remove(sheet)
symbols = ['o', 'v', 's', '*', 'd', '^', 'P']*2
df_por = metal_dict['Cu-por']
# In[6]:
pts_dict = dict()
for i, sheet in enumerate(sheets):
df = metal_dict[sheet]
pts_dict[sheet] = gplately.Points(model, df['Lon'], df['Lat'])
pts_por = pts_dict['Cu-por']
seamounts_filename = "data/Pacific_synthetic_seamounts.gpml"
seamounts = pygplates.FeatureCollection(seamounts_filename)
LIP_conjugates_filename = "data/LIP_conjugates/LIP_conjugates_0Ma.shp"
LIPs_filename = "data/Whittaker_etal_2015_LIPs.gpmlz"
LIPs = pygplates.FeatureCollection(LIP_conjugates_filename)
LIPs.add(pygplates.FeatureCollection(LIPs_filename))
# In[17]:
def grad(raster, tol_grad=2, iter_dilation=0, mask=True, return_gradient=False):
image = raster.fill_NaNs(return_array=True)
gradX, gradY = np.gradient(image)
gradXY = np.hypot(gradX, gradY)
mask_fz = gradXY > tol_grad
fz_grid = np.zeros(mask_fz.shape)
fz_grid[mask_fz] = 1
if iter_dilation:
fz_grid = ndimage.binary_dilation(fz_grid, iterations=iter_dilation)
if mask:
fz_grid[raster.data.mask] = np.nan
fz_raster = gplately.Raster(data=fz_grid, extent='global')
if return_gradient:
return fz_raster, gradXY
else:
return fz_raster
def reconstruct_fracture_zones(time, return_grid=False, subduction_data=None):
if subduction_data is None:
subduction_data = model.tessellate_subduction_zones(time, np.deg2rad(0.2), ignore_warnings=True)
subduction_data = subduction_data.copy()
trench_lons = subduction_data[:,0]
trench_lats = subduction_data[:,1]
trench_norm = subduction_data[:,7]
# store these for later
subduction_lons = trench_lons.copy()
subduction_lats = trench_lats.copy()
dlon = -2.5*np.sin(np.radians(trench_norm))
dlat = -2.5*np.cos(np.radians(trench_norm))
trench_lons += dlon
trench_lats += dlat
agegrid_raster = gplately.Raster(filename=agegrid_filename.format(time))
fz_raster, gradXY = grad(agegrid_raster, tol_grad=2, iter_dilation=0, mask=True, return_gradient=True)
mask_raster = fz_raster.data >= 1
fz_raster.data[mask_raster] = gradXY[mask_raster]
trench_fz = fz_raster.interpolate(trench_lons, trench_lats, method='nearest')
# mask points where fracture zone intersects a subduction zone
mask_trench_fz = trench_fz > 0
trench_fz = trench_fz[mask_trench_fz]
trench_lons = subduction_lons[mask_trench_fz]
trench_lats = subduction_lats[mask_trench_fz]
if return_grid:
return trench_lons, trench_lats, trench_fz, fz_raster.data
else:
return trench_lons, trench_lats, trench_fz
def reconstruct_seamount_subduction(time, dtol=50, return_seamounts=False, subduction_data=None):
if subduction_data is None:
subduction_data = model.tessellate_subduction_zones(time, np.deg2rad(0.2), ignore_warnings=True)
trench_lons = subduction_data[:,0]
trench_lats = subduction_data[:,1]
trench_norm = subduction_data[:,7]
# reconstruct seamount and extract points on sphere
reconstructed_seamounts = model.reconstruct(seamounts_filename, time)
seamount_lons = np.zeros(len(reconstructed_seamounts))
seamount_lats = np.zeros(len(reconstructed_seamounts))
for i, seamount in enumerate(reconstructed_seamounts):
seamount_lats[i], seamount_lons[i] = seamount.get_reconstructed_geometry().to_lat_lon()
# find the nearest trench segment for each seamount
xt, yt, zt = gplately.tools.lonlat2xyz(trench_lons, trench_lats)
xs, ys, zs = gplately.tools.lonlat2xyz(seamount_lons, seamount_lats)
tree_seamount = cKDTree(np.c_[xs,ys,zs])
dist_to_seamount, idx_seamount = tree_seamount.query(np.c_[xt, yt, zt])
dist_to_seamount *= gplately.EARTH_RADIUS
# filter trench segments within dtol of each seamount
mask_trench_seamount = dist_to_seamount <= dtol
sz_lons = trench_lons[mask_trench_seamount]
sz_lats = trench_lats[mask_trench_seamount]
if return_seamounts:
return seamount_lons, seamount_lats, sz_lons, sz_lats
else:
return sz_lons, sz_lats
def reconstruct_LIP_subduction(time, dtol=50, return_LIPs=False, subduction_data=None):
if subduction_data is None:
subduction_data = model.tessellate_subduction_zones(time, np.deg2rad(0.2), ignore_warnings=True)
trench_lons = subduction_data[:,0]
trench_lats = subduction_data[:,1]
# reconstruct seamount and extract points on sphere
LIPs = pygplates.FeatureCollection(LIP_conjugates_filename)
LIPs.add(pygplates.FeatureCollection(LIPs_filename))
reconstructed_LIPs = model.reconstruct(LIPs, time)
# find the nearest trench segment for each LIP
xt, yt, zt = gplately.tools.lonlat2xyz(trench_lons, trench_lats)
tree_trench = cKDTree(np.c_[xt,yt,zt])
trench_LIP_lons = []
trench_LIP_lats = []
for LIP in reconstructed_LIPs:
LIP_coords = LIP.get_reconstructed_geometry().get_points().to_lat_lon_array()
LIP_lons = LIP_coords[:,1]
LIP_lats = LIP_coords[:,0]
xl, yl, zl = gplately.tools.lonlat2xyz(LIP_lons, LIP_lats)
dist_to_LIP, idx_LIP = tree_trench.query(np.c_[xl, yl, zl])
dist_to_LIP *= gplately.EARTH_RADIUS
mask_trench_LIP = dist_to_LIP <= dtol
trench_LIP_lons.extend(trench_lons[idx_LIP[mask_trench_LIP]])
trench_LIP_lats.extend(trench_lats[idx_LIP[mask_trench_LIP]])
if return_LIPs:
return reconstructed_LIPs, np.array(trench_LIP_lons), np.array(trench_LIP_lats)
else:
return np.array(trench_LIP_lons), np.array(trench_LIP_lats)
def plot_timseries(time):
subduction_data = model.tessellate_subduction_zones(time, np.deg2rad(0.2), ignore_warnings=True)
# fracture zones
sm_lons, sm_lats, sz_lons, sz_lats = reconstruct_seamount_subduction(time, return_seamounts=True, subduction_data=subduction_data)
LIP_features, LIP_lons, LIP_lats = reconstruct_LIP_subduction(time, return_LIPs=True, subduction_data=subduction_data)
fz_lons, fz_lats, fz_mag, fz_raster = reconstruct_fracture_zones(time, return_grid=True, subduction_data=subduction_data)
LIP_ft = model.reconstruct(pygplates.FeatureCollection(LIPs_filename), time)
LIP_conj_ft = model.reconstruct(pygplates.FeatureCollection(LIP_conjugates_filename), time)
# set up map plot
fig = plt.figure(figsize=(12,6))
ax = fig.add_subplot(111, projection=ccrs.Mollweide(central_longitude=180))
ax.set_global()
ax.imshow([[0,0],[0,0]], extent=[-180,180,-180,180], cmap='Greys', vmin=0, vmax=1, transform=gplot.base_projection)
ax.gridlines(color='0.7', linestyle=':', xlocs=np.arange(-180,180,30), ylocs=np.arange(-90,90,30))
# Plot shapefile features, subduction zones and MOR boundaries at 50 Ma
gplot.time = time # Ma
# gplot.plot_continent_ocean_boundaries(ax, color='b', alpha=0.05)
# gplot.plot_grid(ax, fz_raster, origin='lower', cmap='RdPu', vmin=0, vmax=2)
# gplot.plot_continents(ax, facecolor='0.8')
# gplot.plot_coastlines(ax, color='0.5')
# gplot.plot_ridges_and_transforms(ax, color='red', zorder=9)
ax.contourf(fz_raster.data, extent=extent_global, origin='lower', cmap='Purples', levels=(1,1e99), transform=gplot.base_projection)
if len(LIP_ft):
gplot.plot_feature(ax, LIP_ft, edgecolor='k', linewidth=0.5, facecolor='IndianRed', zorder=6)
if len(LIP_conj_ft):
gplot.plot_feature(ax, LIP_conj_ft, color='IndianRed', zorder=6)
if len(sm_lons):
ax.scatter(sm_lons, sm_lats, c='RoyalBlue', marker='.', s=3, transform=gplot.base_projection, zorder=6)
# ax.add_feature(cfeature.LAND, zorder=5)
gplot.plot_coastlines(ax, color='#EEEDD5', zorder=5)
gplot.plot_all_topologies(ax, zorder=4, linewidth=0.5)
gplot.plot_trenches(ax, zorder=8)
gplot.plot_subduction_teeth(ax, zorder=8)
gplot.plot_ridges(ax, color='r', zorder=8)
ax.scatter(fz_lons, fz_lats, c='MediumPurple', transform=gplot.base_projection, zorder=7)
ax.scatter(LIP_lons, LIP_lats, c='Tomato', transform=gplot.base_projection, zorder=7)
ax.scatter(sz_lons, sz_lats, c='SkyBlue', transform=gplot.base_projection, zorder=7)
# plot Cu-por
por_lon, por_lat = pts_por.reconstruct(time, return_array=True)
size = df_por['Cu (Mt)'].fillna(0).to_numpy()
mask_times = np.nonzero(np.logical_and(df_por['Age (Ga)']*1000 >= time, df_por['Age (Ga)']*1000 < time + 10))[0]
order = df_por['Age (Ga)'].iloc[mask_times].argsort()
mask_times = mask_times[order]
if mask_times.any():
sc = ax.scatter(por_lon[mask_times],
por_lat[mask_times],
s=5+size[mask_times]*2,
marker='o',
edgecolor='goldenrod',
linewidth=1.5,
color='none',
zorder=6,
transform=gplot.base_projection)
# # create legend elements
# legend_elements.append( Line2D([0],[0], color='C{}'.format(i), marker=symbols[i], label=label,
# linestyle='none', markeredgecolor='k', markeredgewidth=0.5) )
# fig.legend(handles=legend_elements, loc='center', frameon=False, bbox_to_anchor=(0.5,0), ncol=2,
# title='Mineral deposit types', title_fontsize=12)
fig.text(0.16, 0.8, "{:4d} Ma".format(time), fontsize=14, color='k')
# ax.background_patch.set_fill(False)
# ax.outline_patch.set_visible(False)
# ax.background_patch.set_alpha(0)
fig.savefig("snapshots/fz_metals_{:04d}Ma.png".format(time), dpi=300, bbox_inches='tight', transparent=True)
plt.close(fig)
return None
# plot_timseries(0)
from joblib import Parallel, delayed
if __name__ == "__main__":
_ = Parallel(n_jobs=-3, backend='multiprocessing', verbose=1)(delayed(plot_timseries) (time,) for time in reconstruction_times)
# Create a video using this command:
#
# ```sh
# cat $(ls -r snapshots/fz_metals_*) | ffmpeg -y -f image2pipe -r 8 -i - -c:v h264_videotoolbox -q:v 50 fz_sm_LIP_metals_clennett2020.mp4
# ```