-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathtrain_GeomGCN_ExperimentTwoAll.py
185 lines (163 loc) · 8.51 KB
/
train_GeomGCN_ExperimentTwoAll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# MIT License
#
# Copyright (c) 2019 Geom-GCN Authors
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import json
import os
import time
import dgl.init
import numpy as np
import tensorboardX
import torch as th
import torch.nn.functional as F
import utils_data
from utils_layers import GeomGCNNet
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str)
parser.add_argument('--num_hidden', type=int)
parser.add_argument('--num_heads_layer_one', type=int)
parser.add_argument('--num_heads_layer_two', type=int)
parser.add_argument('--layer_one_ggcn_merge', type=str, default='cat')
parser.add_argument('--layer_two_ggcn_merge', type=str, default='mean')
parser.add_argument('--layer_one_channel_merge', type=str, default='cat')
parser.add_argument('--layer_two_channel_merge', type=str, default='mean')
parser.add_argument('--dropout_rate', type=float)
parser.add_argument('--learning_rate', type=float)
parser.add_argument('--weight_decay_layer_one', type=float)
parser.add_argument('--weight_decay_layer_two', type=float)
parser.add_argument('--num_epochs_patience', type=int, default=100)
parser.add_argument('--num_epochs_max', type=int, default=5000)
parser.add_argument('--run_id', type=str)
parser.add_argument('--dataset_split', type=str)
parser.add_argument('--learning_rate_decay_patience', type=int, default=50)
parser.add_argument('--learning_rate_decay_factor', type=float, default=0.8)
args = parser.parse_args()
vars(args)['model'] = 'GeomGCN_TwoLayers_ExperimentTwoAll'
t1 = time.time()
if args.dataset_split == 'jknet':
g, features, labels, train_mask, val_mask, test_mask, num_features, num_labels = utils_data.load_data(
args.dataset, None, 0.6, 0.2, 'ExperimentTwoAll')
else:
g, features, labels, train_mask, val_mask, test_mask, num_features, num_labels = utils_data.load_data(
args.dataset, args.dataset_split, None, None, 'ExperimentTwoAll')
print(time.time() - t1)
g.set_n_initializer(dgl.init.zero_initializer)
g.set_e_initializer(dgl.init.zero_initializer)
net = GeomGCNNet(g=g, num_input_features=num_features, num_output_classes=num_labels, num_hidden=args.num_hidden,
num_divisions=25, dropout_rate=args.dropout_rate,
num_heads_layer_one=args.num_heads_layer_one, num_heads_layer_two=args.num_heads_layer_two,
layer_one_ggcn_merge=args.layer_one_ggcn_merge,
layer_one_channel_merge=args.layer_one_channel_merge,
layer_two_ggcn_merge=args.layer_two_ggcn_merge,
layer_two_channel_merge=args.layer_two_channel_merge)
optimizer = th.optim.Adam([{'params': net.geomgcn1.parameters(), 'weight_decay': args.weight_decay_layer_one},
{'params': net.geomgcn2.parameters(), 'weight_decay': args.weight_decay_layer_two}],
lr=args.learning_rate)
learning_rate_scheduler = th.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
factor=args.learning_rate_decay_factor,
patience=args.learning_rate_decay_patience)
writer = tensorboardX.SummaryWriter(logdir=f'runs/{args.model}_{args.run_id}')
net.cuda()
features = features.cuda()
labels = labels.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
# Adapted from https://github.com/PetarV-/GAT/blob/master/execute_cora.py
patience = args.num_epochs_patience
vlss_mn = np.inf
vacc_mx = 0.0
vacc_early_model = None
vlss_early_model = None
state_dict_early_model = None
curr_step = 0
# Adapted from https://docs.dgl.ai/tutorials/models/1_gnn/1_gcn.html
dur = []
for epoch in range(args.num_epochs_max):
t0 = time.time()
net.train()
train_logits = net(features)
train_logp = F.log_softmax(train_logits, 1)
train_loss = F.nll_loss(train_logp[train_mask], labels[train_mask])
train_pred = train_logp.argmax(dim=1)
train_acc = th.eq(train_pred[train_mask], labels[train_mask]).float().mean().item()
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
net.eval()
with th.no_grad():
val_logits = net(features)
val_logp = F.log_softmax(val_logits, 1)
val_loss = F.nll_loss(val_logp[val_mask], labels[val_mask]).item()
val_pred = val_logp.argmax(dim=1)
val_acc = th.eq(val_pred[val_mask], labels[val_mask]).float().mean().item()
learning_rate_scheduler.step(val_loss)
dur.append(time.time() - t0)
print(
"Epoch {:05d} | Train Loss {:.4f} | Train Acc {:.4f} | Val Loss {:.4f} | Val Acc {:.4f} | Time(s) {:.4f}".format(
epoch, train_loss.item(), train_acc, val_loss, val_acc, sum(dur) / len(dur)))
writer.add_scalar('Train Loss', train_loss.item(), epoch)
writer.add_scalar('Val Loss', val_loss, epoch)
writer.add_scalar('Train Acc', train_acc, epoch)
writer.add_scalar('Val Acc', val_acc, epoch)
# Adapted from https://github.com/PetarV-/GAT/blob/master/execute_cora.py
if val_acc >= vacc_mx or val_loss <= vlss_mn:
if val_acc >= vacc_mx and val_loss <= vlss_mn:
vacc_early_model = val_acc
vlss_early_model = val_loss
state_dict_early_model = net.state_dict()
vacc_mx = np.max((val_acc, vacc_mx))
vlss_mn = np.min((val_loss, vlss_mn))
curr_step = 0
else:
curr_step += 1
if curr_step >= patience:
break
net.load_state_dict(state_dict_early_model)
net.eval()
with th.no_grad():
test_logits = net(features)
test_logp = F.log_softmax(test_logits, 1)
test_loss = F.nll_loss(test_logp[test_mask], labels[test_mask]).item()
test_pred = test_logp.argmax(dim=1)
test_acc = th.eq(test_pred[test_mask], labels[test_mask]).float().mean().item()
test_hidden_features = net.geomgcn1(features).cpu().numpy()
final_train_pred = test_pred[train_mask].cpu().numpy()
final_val_pred = test_pred[val_mask].cpu().numpy()
final_test_pred = test_pred[test_mask].cpu().numpy()
results_dict = vars(args)
results_dict['test_loss'] = test_loss
results_dict['test_acc'] = test_acc
results_dict['actual_epochs'] = 1 + epoch
results_dict['val_acc_max'] = vacc_mx
results_dict['val_loss_min'] = vlss_mn
results_dict['total_time'] = sum(dur)
with open(os.path.join('runs', f'{args.model}_{args.run_id}_results.txt'), 'w') as outfile:
outfile.write(json.dumps(results_dict) + '\n')
np.savez_compressed(os.path.join('runs', f'{args.model}_{args.run_id}_hidden_features.npz'),
hidden_features=test_hidden_features)
np.savez_compressed(os.path.join('runs', f'{args.model}_{args.run_id}_final_train_predictions.npz'),
final_train_predictions=final_train_pred)
np.savez_compressed(os.path.join('runs', f'{args.model}_{args.run_id}_final_val_predictions.npz'),
final_val_predictions=final_val_pred)
np.savez_compressed(os.path.join('runs', f'{args.model}_{args.run_id}_final_test_predictions.npz'),
final_test_predictions=final_test_pred)