-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributed.jl
53 lines (39 loc) · 1.26 KB
/
distributed.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
using RxInfer, Distributed, SharedArrays
struct FutureMessage{T} <: ReactiveMP.AbstractMessage
future::T
end
ReactiveMP.as_message(message::FutureMessage) = fetch(message.future)
function as_promised(event)
future = @spawnat :any as_message(event)
return FutureMessage(future)
end
struct DistributedPipelineStage <: ReactiveMP.AbstractPipelineStage end
function ReactiveMP.apply_pipeline_stage(::DistributedPipelineStage, factornode, tag, stream)
return stream |> map(eltype(stream), as_promised)
end
function parallelmapreduce(f, op, x)
m = length(x)
if m < 2 || x isa Tuple
return mapreduce(f, op, x)
end
N = min(length(workers()), div(m, 2))
len = div(m, N)
futures = RemoteChannel(()->Channel{Message}(N))
@distributed for tid in 1:N
if tid == N
domain = ((tid - 1) * len + 1):m
else
domain = ((tid - 1) * len + 1):(tid * len)
end
put!(futures, mapreduce(f, op, view(x, domain)))
end
results = Vector{Message}(undef, N)
for tid in 1:N
results[tid] = fetch(take!(futures))
end
reduce(op, results)
end
function dist_prod(strategy, _, _)
× = (left, right) -> ReactiveMP.multiply_messages(strategy, left, right)
return (messages) -> parallelmapreduce(as_message, ×, messages)
end