-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathmain.py
229 lines (193 loc) · 8.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import absolute_import
import sys
sys.path.append('./')
import argparse
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import os.path as osp
import numpy as np
import math
import time
import torch
from torch import nn, optim
from torch.backends import cudnn
from torch.utils.data import DataLoader, SubsetRandomSampler
from config import get_args
from lib import datasets, evaluation_metrics, models
from lib.models.model_builder import ModelBuilder
from lib.datasets.dataset import LmdbDataset, AlignCollate
from lib.datasets.concatdataset import ConcatDataset
from lib.loss import SequenceCrossEntropyLoss
from lib.trainers import Trainer
from lib.evaluators import Evaluator
from lib.utils.logging import Logger, TFLogger
from lib.utils.serialization import load_checkpoint, save_checkpoint
from lib.utils.osutils import make_symlink_if_not_exists
global_args = get_args(sys.argv[1:])
def get_data(data_dir, voc_type, max_len, num_samples, height, width, batch_size, workers, is_train, keep_ratio):
if isinstance(data_dir, list):
dataset_list = []
for data_dir_ in data_dir:
dataset_list.append(LmdbDataset(data_dir_, voc_type, max_len, num_samples))
dataset = ConcatDataset(dataset_list)
else:
dataset = LmdbDataset(data_dir, voc_type, max_len, num_samples)
print('total image: ', len(dataset))
if is_train:
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=workers,
shuffle=True, pin_memory=True, drop_last=True,
collate_fn=AlignCollate(imgH=height, imgW=width, keep_ratio=keep_ratio))
else:
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True, drop_last=False,
collate_fn=AlignCollate(imgH=height, imgW=width, keep_ratio=keep_ratio))
return dataset, data_loader
def get_dataset(data_dir, voc_type, max_len, num_samples):
if isinstance(data_dir, list):
dataset_list = []
for data_dir_ in data_dir:
dataset_list.append(LmdbDataset(data_dir_, voc_type, max_len, num_samples))
dataset = ConcatDataset(dataset_list)
else:
dataset = LmdbDataset(data_dir, voc_type, max_len, num_samples)
print('total image: ', len(dataset))
return dataset
def get_dataloader(synthetic_dataset, real_dataset, height, width, batch_size, workers,
is_train, keep_ratio):
num_synthetic_dataset = len(synthetic_dataset)
num_real_dataset = len(real_dataset)
synthetic_indices = list(np.random.permutation(num_synthetic_dataset))
synthetic_indices = synthetic_indices[num_real_dataset:]
real_indices = list(np.random.permutation(num_real_dataset) + num_synthetic_dataset)
concated_indices = synthetic_indices + real_indices
assert len(concated_indices) == num_synthetic_dataset
sampler = SubsetRandomSampler(concated_indices)
concated_dataset = ConcatDataset([synthetic_dataset, real_dataset])
print('total image: ', len(concated_dataset))
data_loader = DataLoader(concated_dataset, batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True, drop_last=True, sampler=sampler,
collate_fn=AlignCollate(imgH=height, imgW=width, keep_ratio=keep_ratio))
return concated_dataset, data_loader
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
args.cuda = args.cuda and torch.cuda.is_available()
if args.cuda:
print('using cuda.')
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
# Redirect print to both console and log file
if not args.evaluate:
# make symlink
make_symlink_if_not_exists(osp.join(args.real_logs_dir, args.logs_dir), osp.dirname(osp.normpath(args.logs_dir)))
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
train_tfLogger = TFLogger(osp.join(args.logs_dir, 'train'))
eval_tfLogger = TFLogger(osp.join(args.logs_dir, 'eval'))
# Save the args to disk
if not args.evaluate:
cfg_save_path = osp.join(args.logs_dir, 'cfg.txt')
cfgs = vars(args)
with open(cfg_save_path, 'w') as f:
for k, v in cfgs.items():
f.write('{}: {}\n'.format(k, v))
# Create data loaders
if args.height is None or args.width is None:
args.height, args.width = (32, 100)
if not args.evaluate:
train_dataset, train_loader = \
get_data(args.synthetic_train_data_dir, args.voc_type, args.max_len, args.num_train,
args.height, args.width, args.batch_size, args.workers, True, args.keep_ratio)
test_dataset, test_loader = \
get_data(args.test_data_dir, args.voc_type, args.max_len, args.num_test,
args.height, args.width, args.batch_size, args.workers, False, args.keep_ratio)
if args.evaluate:
max_len = test_dataset.max_len
else:
max_len = max(train_dataset.max_len, test_dataset.max_len)
train_dataset.max_len = test_dataset.max_len = max_len
# Create model
model = ModelBuilder(arch=args.arch, rec_num_classes=test_dataset.rec_num_classes,
sDim=args.decoder_sdim, attDim=args.attDim, max_len_labels=max_len,
eos=test_dataset.char2id[test_dataset.EOS], STN_ON=args.STN_ON)
# Load from checkpoint
if args.evaluation_metric == 'accuracy':
best_res = 0
elif args.evaluation_metric == 'editdistance':
best_res = math.inf
else:
raise ValueError("Unsupported evaluation metric:", args.evaluation_metric)
start_epoch = 0
start_iters = 0
if args.resume:
checkpoint = load_checkpoint(args.resume)
model.load_state_dict(checkpoint['state_dict'])
# compatibility with the epoch-wise evaluation version
if 'epoch' in checkpoint.keys():
start_epoch = checkpoint['epoch']
else:
start_iters = checkpoint['iters']
start_epoch = int(start_iters // len(train_loader)) if not args.evaluate else 0
best_res = checkpoint['best_res']
print("=> Start iters {} best res {:.1%}"
.format(start_iters, best_res))
if args.cuda:
device = torch.device("cuda")
model = model.to(device)
model = nn.DataParallel(model)
# Evaluator
evaluator = Evaluator(model, args.evaluation_metric, args.cuda)
if args.evaluate:
print('Test on {0}:'.format(args.test_data_dir))
if len(args.vis_dir) > 0:
vis_dir = osp.join(args.logs_dir, args.vis_dir)
if not osp.exists(vis_dir):
os.makedirs(vis_dir)
else:
vis_dir = None
start = time.time()
evaluator.evaluate(test_loader, dataset=test_dataset, vis_dir=vis_dir)
print('it took {0} s.'.format(time.time() - start))
return
# Optimizer
param_groups = model.parameters()
param_groups = filter(lambda p: p.requires_grad, param_groups)
optimizer = optim.Adadelta(param_groups, lr=args.lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[4,5], gamma=0.1)
# Trainer
loss_weights = {}
loss_weights['loss_rec'] = 1.
if args.debug:
args.print_freq = 1
trainer = Trainer(model, args.evaluation_metric, args.logs_dir,
iters=start_iters, best_res=best_res, grad_clip=args.grad_clip,
use_cuda=args.cuda, loss_weights=loss_weights)
# Start training
evaluator.evaluate(test_loader, step=0, tfLogger=eval_tfLogger, dataset=test_dataset)
for epoch in range(start_epoch, args.epochs):
scheduler.step(epoch)
current_lr = optimizer.param_groups[0]['lr']
trainer.train(epoch, train_loader, optimizer, current_lr,
print_freq=args.print_freq,
train_tfLogger=train_tfLogger,
is_debug=args.debug,
evaluator=evaluator,
test_loader=test_loader,
eval_tfLogger=eval_tfLogger,
test_dataset=test_dataset)
# Final test
print('Test with best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
model.module.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(test_loader, dataset=test_dataset)
# Close the tensorboard logger
train_tfLogger.close()
eval_tfLogger.close()
if __name__ == '__main__':
# parse the config
args = get_args(sys.argv[1:])
main(args)