-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgaussian.py
126 lines (98 loc) · 2.49 KB
/
gaussian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pylab import *
import matplotlib.animation as animation
import cmath
pi = np.pi
h_x = 0.01
h_t = 0.5
x0 = 0.0
xe = 300.0
L = abs(xe-x0)
N = int(abs(xe-x0)/h_x)
sigma = L/20.0
V0 = -0.50
lamda = 2.0*h_x**2/h_t
spread = 1.5
total_time = lamda*(sigma**2)*((spread**2 - 1.0)**0.5)/(4.0*h_x**2)
k = (N+1)*lamda/(8*h_x*total_time)#n*pi/L
xv = 130.0
x = np.arange(x0,xe,h_x)
# Intial psi
psi = np.exp(1j*k*x)*np.exp(-(x-L/4)**2/(2.0*sigma**2))
psi[0] = complex(0.0,0.0)
psi[N-1] = complex(0.0,0.0)
# Potential
V = []
for i in range(N):
#if (x0 + i*h_x) >= xv:
# V.append(V0)
if (x0 + i*h_x) >= xv and (x0 + i*h_x) <= xv + 50:
V.append(V0)#((i*h_x-xv)/100)**0.5)
else:
V.append(0.0)
#V.append(((150.0 - i*h_x)/37.5)**2)
# Omega
def om(psi):
global V
oma = [-psi[1]]
for i in range(1,N):
if i != N-1:
oma1 = psi[i+1]
else:
oma1 = 0.0
oma.append(-oma1 + (2.0 + h_x**2 * V[i] + 1j*lamda)*psi[i] - psi[i-1])
z=np.arange(N)
return oma
omega = om(psi)
def v1v2(psi,omega):
global V
v1 = [complex(0.0,0.0)]
v2 = [complex(0.0,0.0)]
v1.append(2.0 + h_x**2 * V[1] - 1j*lamda)
v2.append(omega[1])
v1[0] = 0.0
v2[0] = v1[0]*(v2[1] - omega[1])
for i in range(2,N):
v1.append(2.0 + h_x**2 * V[i] - 1j*lamda - 1/v1[i-1])
v2.append(omega[i] + v2[i-1]/v1[i-1])
return v1,v2
v1,v2 = v1v2(psi,omega)
fig= figure()
fig.suptitle("Gaussian Wave Packet")
ax01 = subplot2grid((2,1), (0, 0))
ax03 = subplot2grid((2,1), (1, 0))
#ax01.set_title('Real $\psi$ vs x')
#ax02.set_title('Imaginary $\psi$ vs x')
#ax03.set_title('Probability vs x')
ax01.set_ylabel("Real part of $\psi$")
ax03.set_xlabel("x")
ax03.set_ylabel("Proability")
wave1, pot1 = ax01.plot(x,psi.real,x,V)
wave1.set_label('$\psi$')
pot1.set_label('V')
ax01.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
ax01.set_ylim([-2,2])
wave2, pot2 = ax03.plot(x,abs(psi)**2,'xkcd:black',x,V)
wave2.set_label('Prob.')
pot2.set_label('V')
ax03.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
ax03.set_ylim([V0 - 0.5,3.8])
#wave, = ax[0].plot(x,v1.real)
def animate(t):
if t == 0:
return wave1,wave2
global psi,v1,v2,omega,x
psi[0] = complex(0.0)
psi[N-1] = complex(0.0)
psi[N-2] = -v2[N-2]/v1[N-2]
for i in range(N-3,0,-1):
psi[i] = (psi[i+1] - v2[i])/v1[i]
#print t
omega = om(psi)
v1,v2 = v1v2(psi,omega)
wave1.set_data(x,psi.real)
wave2.set_data(x,abs(psi)**2)
return wave1, wave2
ani = animation.FuncAnimation(fig,animate,None, interval = 1)
plt.show()