forked from CS501ProSCE/DroneProject
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLearnAllParam.py
125 lines (88 loc) · 4 KB
/
LearnAllParam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
CS501 Group 16
Fall 2018
Written by Thomas Shaw
This module imports the data and executes the algorithms.
ML algorithm re-used code from: https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping
credit: Mark Dregan
"""
from MavlinkParameters import mavlink_types
from MavlinkParameters import mavlink_param
from MavlinkParameters import mavlink_index
import matplotlib.pyplot as plt
import numpy as np
from knndtw import KnnDtw
from knndtw import ProgressBar
from k_fold_cv import k_fold_cross_val
dataset = 'Data2/'
trainsample = 1 #this will choose how much to downsample training data. (1 = all data, 2 = half data, 4 = quarter data)
#get time for computatoin length
timestartalg = datetime.datetime.now()
#loop through entire parameter set, ignoring index 1 which is timestamp
for typ in range(1,len(mavlink_types)):
for param in range(1,len(mavlink_param[typ])):
dataparam = mavlink_types[typ] + '_' + mavlink_param[typ][param]
trainingdatafile = dataset + 'train_' + dataparam + '.txt'
traininglabelfile = dataset + 'train_labels.txt'
testdatafile = dataset + 'test_' + dataparam + '.txt'
testlabelfile = dataset + 'test_labels.txt'
# Import the HAR dataset
x_train_file = open(trainingdatafile, 'r')
y_train_file = open(traininglabelfile, 'r')
x_test_file = open(testdatafile, 'r')
y_test_file = open(testlabelfile, 'r')
# Create empty lists
x_train = []
y_train = []
x_test = []
y_test = []
# Mapping table for classes
labels = {1:'Hover', 2:'Impact (Front Left)', 3:'Impact (Front Right)', 4:'Impact (Back Left)', 5:'Impact (Back Right)',
6:'Gust (from Left)', 7:'Gust (from Right)', 8: 'Gust (from front)' }
# Loop through datasets
for x in x_train_file:
x_train.append([float(ts) for ts in x.split()])
for y in y_train_file:
y_train.append(int(y.rstrip('\n')))
for x in x_test_file:
x_test.append([float(ts) for ts in x.split()])
for y in y_test_file:
y_test.append(int(y.rstrip('\n')))
#close data files
x_train_file.close()
y_train_file.close()
x_test_file.close()
y_test_file.close()
# Convert to numpy for efficiency
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
#Analyze dataset
m = KnnDtw(n_neighbors=3, max_warping_window=500)
m.fit(x_train[::trainsample], y_train)
label, proba = m.predict(x_test)
#Classification report
from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(label, y_test,
target_names=[l for l in labels.values()]))
#Confusion Matrix
conf_mat = confusion_matrix(label, y_test)
fig = plt.figure(figsize=(7,7))
width = np.shape(conf_mat)[1]
height = np.shape(conf_mat)[0]
res = plt.imshow(np.array(conf_mat), cmap=plt.cm.summer, interpolation='nearest')
for i, row in enumerate(conf_mat):
for j, c in enumerate(row):
if c>0:
plt.text(j-.2, i+.1, c, fontsize=16)
#cb = fig.colorbar(res)
plt.title('Confusion Matrix for ' + dataparam)
plt.xlabel('Data')
plt.ylabel('ML Identification')
_ = plt.xticks(range(8), [l for l in labels.values()], rotation=90)
_ = plt.yticks(range(8), [l for l in labels.values()])
#get end time for computatoin length and compute total run time
timeendalg = datetime.datetime.now()
runtime = timeendalg - timestartalg
print('total algorithm computation time was %f seconds' % (runtime.total_seconds()))