-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcaffe_generate_nets_example.m
94 lines (76 loc) · 3.37 KB
/
caffe_generate_nets_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
%% Description:
% Test for caffe_save_net function
%% Parameters:
%% Execution:
clear all;
% --- Building the net
%% --- Headers
net_indx = '01_test';
net_filename = ['net_poke_cnn' net_indx];
% --- Data train/val
net_descr.head.name = net_filename;
head_indx = 0;
head_indx = head_indx + 1;
net_descr.head.layer{head_indx} = caffe_layer_data_def( 'hdf5', 1); %Train
net_descr.head.layer{head_indx}.hdf5_data_param.batch_size = 256;
head_indx = head_indx + 1;
net_descr.head.layer{head_indx} = caffe_layer_data_def( 'hdf5', 0); %Validation
net_descr.head.layer{head_indx}.hdf5_data_param.batch_size = 153;
% --- Data deploy
net_descr.head_deploy.name = net_filename;
net_descr.head_deploy.input = 'data';
net_descr.head_deploy.input_shape.dim{1} = 1;
net_descr.head_deploy.input_shape.dim{2} = 1;
net_descr.head_deploy.input_shape.dim{3} = 57;
net_descr.head_deploy.input_shape.dim{4} = 31;
% input: "data"
% input_shape {
% dim: 1
% dim: 1
% dim: 57
% dim: 31
% }
%% --- Body
% --- Conv 0
block_indx = 0; %For every block of layers, example: {FC + ReLU + Dropout}
net_descr.body{1} = caffe_layer_conv_def( block_indx, 'data', -1, 64, true, ...
'kernel_h', 1, 'kernel_w', 2);
net_descr.body{end+1} = caffe_layer_relu_def( block_indx, net_descr.body{end}.top );
net_descr.body{end+1} = caffe_layer_pool_def( block_indx, net_descr.body{end}.top, -1, ...
'kernel_h', 1, 'kernel_w', 2, 'stride_h', 1, 'stride_w', 2);
% --- Conv 1
block_indx = block_indx + 1;
net_descr.body{end+1} = caffe_layer_conv_def( block_indx, net_descr.body{end}.top, -1, 128, true, ...
'kernel_h', 1, 'kernel_w', 2);
net_descr.body{end+1} = caffe_layer_relu_def( block_indx, net_descr.body{end}.top );
net_descr.body{end+1} = caffe_layer_pool_def( block_indx, net_descr.body{end}.top, -1, ...
'kernel_h', 1, 'kernel_w', 2, 'stride_h', 1, 'stride_w', 2);
% --- Conv 2
block_indx = block_indx + 1;
net_descr.body{end+1} = caffe_layer_conv_def( block_indx, net_descr.body{end}.top, -1, 128, true, ...
'kernel_h', 1, 'kernel_w', 2);
net_descr.body{end+1} = caffe_layer_relu_def( block_indx, net_descr.body{end}.top );
net_descr.body{end+1} = caffe_layer_pool_def( block_indx, net_descr.body{end}.top , -1, ...
'kernel_h', 1, 'kernel_w', 2, 'stride_h', 1, 'stride_w', 2);
% --- Conv 3
block_indx = block_indx + 1;
net_descr.body{end+1} = caffe_layer_conv_def( block_indx, net_descr.body{end}.top, -1, 128, true, ...
'kernel_h', 57, 'kernel_w', 1);
net_descr.body{end+1} = caffe_layer_relu_def( block_indx, net_descr.body{end}.top );
% --- FC 4
net_descr.body{end+1} = caffe_layer_fc_def( block_indx, net_descr.body{end}.name, 256, true);
net_descr.body{end+1} = caffe_layer_relu_def( block_indx, net_descr.body{end}.top );
net_descr.body{end+1} = caffe_layer_drop_def( block_indx );
% --- FC 5
block_indx = block_indx + 1;
net_descr.body{end+1} = caffe_layer_fc_def( block_indx , net_descr.body{end}.top, 256, true);
%% --- Footer (losses and accuracies)
% --- Train/Val
net_descr.loss{1} = caffe_layer_accuracy_def( 'accuracy', {net_descr.body{end}.top, 'label'} );
net_descr.loss{2} = caffe_layer_loss_def( 'loss', {net_descr.body{end}.top, 'label'} );
% --- Deploy
net_descr.loss_deploy{1} = caffe_layer_loss_def( 'prob', net_descr.body{end}.top );
net_descr.loss_deploy{1}.type = 'Softmax';
%% Saving the whole thing
% caffe_save_net( net_filename, net_header, net_descr.body );
caffe_generate_nets(net_filename, net_descr);