-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwrapper.py
220 lines (184 loc) · 8.16 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from classifier import *
class WrapperFeatureSelection:
def __init__(self):
#raise NotImplementedError('Need to override this method')
pass
def first_solutions_generation(self):
"""
Returns if it is the first iteration of the feature selection strategy implemented.
"""
raise NotImplementedError('Need to override this method')
def generate_initial_possible_solutions(self):
"""
Generates the first possible solutions for the feature selection strategy implemented.
"""
raise NotImplementedError('Need to override this method')
def generate_new_possible_solutions(self):
"""
Generates a new set of possible solutions, usually the second or later genetation of the strategy.
"""
raise NotImplementedError('Need to override this method')
def reached_stopping_criteria(self):
"""
Returns if the algorithm has reached the stopping criteria of the strategy.
"""
raise NotImplementedError('Need to override this method')
def evaluate_possible_solutions(self):
"""
Evaluates the performance of the classification algorithm for each possible solution of the current generation.
"""
raise NotImplementedError('Need to override this method')
def generate_possible_solutions(self):
"""
Generates the new generation of possible solutions, depending on the current state
of the algorithm.
"""
if self.first_solutions_generation():
self.generate_initial_possible_solutions()
else:
self.generate_new_possible_solutions()
def perform_feature_selection(self):
"""
Performs the feature selection strategy indeed, by calling each function
at a proper time.
"""
while not self.reached_stopping_criteria():
self.generate_possible_solutions()
self.evaluate_possible_solutions()
class BackwardFeatureElimination(WrapperFeatureSelection):
def __init__(self, number_variables, classifier, classifier_params, metric, records, classes, folds):
self.number_variables = number_variables
self.classifier = ParallelClassifier(classifier, classifier_params, metric)
self.records = records
self.classes = classes
self.folds = folds
self.variable_subset = range(self.number_variables)
self.best_score = None
self.best_var_subset = []
self.best_temp_score = None
self.best_temp_var_subset = []
self.possible_solutions = []
def first_solutions_generation(self):
return (self.best_temp_score == None)
def generate_initial_possible_solutions(self):
for variable in range(self.number_variables):
variable_subset = list(self.variable_subset)
variable_subset.remove(variable)
self.possible_solutions.append(variable_subset)
self.variable_subset = range(self.number_variables)
def generate_new_possible_solutions(self):
self.possible_solutions = []
self.best_temp_score = None
for variable in self.variable_subset:
variable_subset = list(self.variable_subset)
variable_subset.remove(variable)
self.possible_solutions.append(variable_subset)
def reached_stopping_criteria(self):
return ((self.best_score != None and self.best_temp_score < self.best_score) or len(self.variable_subset) <= 1)
def evaluate_possible_solutions(self):
for variable_subset in self.possible_solutions:
records_subset = self.records[:, variable_subset]
score = self.classifier.get_final_score(records_subset, self.classes, self.folds)
if self.best_temp_score == None or score >= self.best_temp_score:
self.best_temp_score = score
self.best_temp_var_subset = list(variable_subset)
if (self.best_score <= self.best_temp_score):
self.best_score = self.best_temp_score
self.best_var_subset = list(self.best_temp_var_subset)
self.variable_subset = list(self.best_var_subset)
class ForwardFeatureSelection(WrapperFeatureSelection):
def __init__(self, number_variables, classifier, classifier_params, metric, records, classes, folds):
self.number_variables = number_variables
self.classifier = ParallelClassifier(classifier, classifier_params, metric)
self.records = records
self.classes = classes
self.folds = folds
self.variable_subset = range(self.number_variables)
self.best_score = None
self.best_var_subset = []
self.best_temp_score = None
self.best_temp_var_subset = []
self.possible_solutions = []
def first_solutions_generation(self):
return (self.best_temp_score == None)
def generate_initial_possible_solutions(self):
for variable in range(self.number_variables):
variable_subset = set(self.best_var_subset)
variable_subset.add(variable)
variable_subset = list(variable_subset)
self.possible_solutions.append(variable_subset)
def generate_new_possible_solutions(self):
self.possible_solutions = []
self.best_temp_score = None
for variable in self.variable_subset:
variable_subset = set(self.best_var_subset)
variable_subset.add(variable)
variable_subset = list(variable_subset)
self.possible_solutions.append(variable_subset)
def reached_stopping_criteria(self):
return ((self.best_score != None and (self.best_temp_score < self.best_score or len(self.best_temp_var_subset) > len(self.best_var_subset))) or len(self.best_var_subset) >= self.number_variables)
'''if self.best_score != None:
return False
elif self.best_temp_score == self.best_score:
else:
return True'''
def evaluate_possible_solutions(self):
for variable_subset in self.possible_solutions:
records_subset = self.records[:, variable_subset]
score = self.classifier.get_final_score(records_subset, self.classes, self.folds)
if self.best_temp_score == None or score > self.best_temp_score:
self.best_temp_score = score
self.best_temp_var_subset = list(variable_subset)
if self.best_score == None or self.best_score < self.best_temp_score:
self.best_score = self.best_temp_score
self.best_var_subset = list(self.best_temp_var_subset)
list(set(self.variable_subset) - set(self.best_var_subset))
self.variable_subset = list(set(self.variable_subset) - set(self.best_var_subset))
class BidirectionalFeatureSelection(WrapperFeatureSelection):
def __init__(self, number_variables, classifier, classifier_params, metric, records, classes, folds):
self.number_variables = number_variables
self.classifier = ParallelClassifier(classifier, classifier_params, metric)
self.records = records
self.classes = classes
self.folds = folds
self.variable_subset = range(self.number_variables)
self.best_score = None
self.best_var_subset = []
self.best_temp_score = None
self.best_temp_var_subset = []
self.worst_score = None
self.worst_var_subset = []
self.possible_solutions = []
def first_solutions_generation(self):
return (self.best_score == None)
def generate_initial_possible_solutions(self):
for variable in self.variable_subset:
variable_subset = set(self.best_var_subset)
variable_subset.add(variable)
variable_subset = list(variable_subset)
self.possible_solutions.append(variable_subset)
def generate_new_possible_solutions(self):
self.possible_solutions = []
for variable in self.variable_subset:
variable_subset = set(self.best_var_subset)
variable_subset.add(variable)
variable_subset = list(variable_subset)
self.possible_solutions.append(variable_subset)
def reached_stopping_criteria(self):
return ((self.best_score != None and (self.best_temp_score < self.best_score or len(self.best_temp_var_subset) > len(self.best_var_subset))) or len(self.variable_subset) <= 1)
def evaluate_possible_solutions(self):
self.best_temp_score = None
self.worst_score = None
for variable_subset in self.possible_solutions:
records_subset = self.records[:, variable_subset]
score = self.classifier.get_final_score(records_subset, self.classes, self.folds)
if self.best_temp_score == None or score > self.best_temp_score:
self.best_temp_score = score
self.best_temp_var_subset = list(variable_subset)
if self.worst_score == None or score < self.worst_score:
self.worst_score = score
self.worst_var_subset = list(variable_subset)
if self.best_score < self.best_temp_score:
self.best_score = self.best_temp_score
self.best_var_subset = list(self.best_temp_var_subset)
self.variable_subset = list(set(self.variable_subset) - set(self.worst_var_subset) - set(self.best_var_subset))