本示例以开源框架Knative为例子,演示如何在Serverless环境中通过Fluid进行统一的数据加速,本例子以AlluxioRuntime为例,实际上Fluid支持所有的Runtime运行在Serverless环境。
1.根据Knative文档安装Knative Serving v1.2,需要开启kubernetes.Deploymentspec-persistent-volume-claim。
检查 Knative的组件是否正常运行
kubectl get Deployments -n knative-serving
注:本文只是作为演示目的,关于Knative的生产系统安装请参考Knative文档最佳实践进行部署。另外由于Knative的容器镜像都在gcr.io镜像仓库,请确保镜像可达。 如果您使用的是阿里云,您也可以直接使用阿里云ACK的托管服务降低配置Knative的复杂度。
- 请参考安装文档安装Fluid最新版, 安装后检查 Fluid 各组件正常运行(本文以 AlluxioRuntime 为例):
$ kubectl get deploy -n fluid-system
NAME READY UP-TO-DATE AVAILABLE AGE
alluxioruntime-controller 1/1 1 1 18m
dataset-controller 1/1 1 1 18m
fluid-webhook 1/1 1 1 18m
通常来说,可以看到一个名为 dataset-controller
的 Deployment、一个名为 alluxioruntime-controller
的 Deployment以及一个名为 fluid-webhook
的 Deployment。
为namespace添加标签
为namespace添加标签fluid.io/enable-injection后,可以开启此namespace下Pod的调度优化功能
$ kubectl label namespace default fluid.io/enable-injection=true
创建 dataset 和 runtime
针对不同类型的 runtime 创建相应的 Runtime 资源,以及同名的 Dataset。这里以 AlluxioRuntime 为例, 以下为Dataset内容
$ cat<<EOF >dataset.yaml
apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
name: serverless-data
spec:
mounts:
- mountPoint: https://mirrors.bit.edu.cn/apache/hbase/stable/
name: hbase
path: "/"
accessModes:
- ReadOnlyMany
---
apiVersion: data.fluid.io/v1alpha1
kind: AlluxioRuntime
metadata:
name: serverless-data
spec:
replicas: 2
tieredstore:
levels:
- mediumtype: MEM
path: /dev/shm
quota: 2Gi
high: "0.95"
low: "0.7"
EOF
执行创建Dataset操作
$ kubectl create -f dataset.yaml
查看Dataset状态
$ kubectl get alluxio
NAME MASTER PHASE WORKER PHASE FUSE PHASE AGE
serverless-data Ready Ready Ready 4m52s
$ kubectl get dataset
NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE
serverless-data 566.22MiB 0.00B 4.00GiB 0.0% Bound 4m52s
创建 Knative Serving 资源对象
$ cat<<EOF >serving.yaml
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: model-serving
spec:
template:
metadata:
labels:
app: model-serving
serverless.fluid.io/inject: "true"
annotations:
autoscaling.knative.dev/target: "10"
autoscaling.knative.dev/scaleDownDelay: "30m"
autoscaling.knative.dev/minScale: "1"
spec:
containers:
- image: fluidcloudnative/serving
ports:
- name: http1
containerPort: 8080
env:
- name: TARGET
value: "World"
volumeMounts:
- mountPath: /data
name: data
readOnly: true
volumes:
- name: data
persistentVolumeClaim:
claimName: serverless-data
readOnly: true
EOF
$ kubectl create -f serving.yaml
service.serving.knative.dev/model-serving created
请在podSpec或者podTemplateSpec中的label中配置serverless.fluid.io/inject: "true"
查看 Knative Serving 是否创建,并检查 fuse-container 是否注入
$ kubectl get po
NAME READY STATUS RESTARTS AGE
model-serving-00001-deployment-64d674d75f-46vvf 3/3 Running 0 76s
serverless-data-master-0 2/2 Running 0 16m
serverless-data-worker-0 2/2 Running 0 16m
serverless-data-worker-1 2/2 Running 0 16m
$ kubectl get po model-serving-00001-deployment-64d674d75f-46vvf -oyaml| grep -i fluid-fuse -B 3
- /opt/alluxio/integration/fuse/bin/alluxio-fuse
- unmount
- /runtime-mnt/alluxio/default/serverless-data/alluxio-fuse
name: fluid-fuse
查看 Knative Serving 启动速度,可以看到启动加载数据的时间是92s
$ kubectl logs model-serving-00001-deployment-64d674d75f-46vvf -c user-container
Begin loading models at 16:29:02
real 1m32.639s
user 0m0.001s
sys 0m1.305s
Finish loading models at 16:29:45
2022-02-15 16:29:45 INFO Hello world sample started.
``****`
清理knative serving实例
$ kubectl delete -f serving.yaml
**执行数据预热**
创建dataload对象,并查看状态:
```yaml
$ cat<<EOF >dataload.yaml
apiVersion: data.fluid.io/v1alpha1
kind: DataLoad
metadata:
name: serverless-dataload
spec:
dataset:
name: serverless-data
namespace: default
EOF
$ kubectl create -f dataload.yaml
dataload.data.fluid.io/serverless-dataload created
$ kubectl get dataload
NAME DATASET PHASE AGE DURATION
serverless-dataload serverless-data Complete 2m43s 34s
检查此时的缓存状态, 目前已经将数据完全缓存到集群中
$ kubectl get dataset
NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE
serverless-data 566.22MiB 566.22MiB 4.00GiB 100.0% Bound 33m
再次创建Knative服务:
$ kubectl create -f serving.yaml
service.serving.knative.dev/model-serving created
此时查看启动时间发现当前启动加载数据的时间是3.66s, 变成没有预热的情况下性能的1/20
kubectl logs model-serving-00001-deployment-6cb54f94d7-dbgxf -c user-container
Begin loading models at 18:38:23
real 0m3.666s
user 0m0.000s
sys 0m1.367s
Finish loading models at 18:38:25
2022-02-15 18:38:25 INFO Hello world sample started.
注: 本例子使用的是Knative serving,如果您没有Knative环境,也可以使用Deployment进行实验。
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-serving
spec:
selector:
matchLabels:
app: model-serving
template:
metadata:
labels:
app: model-serving
serverless.fluid.io/inject: "true"
spec:
containers:
- image: fluidcloudnative/serving
name: serving
ports:
- name: http1
containerPort: 8080
env:
- name: TARGET
value: "World"
volumeMounts:
- mountPath: /data
name: data
volumes:
- name: data
persistentVolumeClaim:
claimName: serverless-data
注:默认的sidecar注入模式是不会开启缓存目录短路读,如果您需要开启该能力,可以在labels中通过配置参数
cachedir.sidecar.fluid.io/inject
为true
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-serving
spec:
selector:
matchLabels:
app: model-serving
template:
metadata:
labels:
app: model-serving
serverless.fluid.io/inject: "true"
cachedir.sidecar.fluid.io/inject: "true"
spec:
containers:
- image: fluidcloudnative/serving
name: serving
ports:
- name: http1
containerPort: 8080
env:
- name: TARGET
value: "World"
volumeMounts:
- mountPath: /data
name: data
volumes:
- name: data
persistentVolumeClaim:
claimName: serverless-data