-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathstereo_depth.py
112 lines (90 loc) · 4.67 KB
/
stereo_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import cv2
import argparse
import sys
from calibration_store import load_stereo_coefficients
def depth_map(imgL, imgR):
""" Depth map calculation. Works with SGBM and WLS. Need rectified images, returns depth map ( left to right disparity ) """
# SGBM Parameters -----------------
window_size = 3 # wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely
left_matcher = cv2.StereoSGBM_create(
minDisparity=-1,
numDisparities=5*16, # max_disp has to be dividable by 16 f. E. HH 192, 256
blockSize=window_size,
P1=8 * 3 * window_size,
# wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely
P2=32 * 3 * window_size,
disp12MaxDiff=12,
uniquenessRatio=10,
speckleWindowSize=50,
speckleRange=32,
preFilterCap=63,
mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY
)
right_matcher = cv2.ximgproc.createRightMatcher(left_matcher)
# FILTER Parameters
lmbda = 80000
sigma = 1.3
visual_multiplier = 6
wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher)
wls_filter.setLambda(lmbda)
wls_filter.setSigmaColor(sigma)
displ = left_matcher.compute(imgL, imgR) # .astype(np.float32)/16
dispr = right_matcher.compute(imgR, imgL) # .astype(np.float32)/16
displ = np.int16(displ)
dispr = np.int16(dispr)
filteredImg = wls_filter.filter(displ, imgL, None, dispr) # important to put "imgL" here!!!
filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg, beta=0, alpha=255, norm_type=cv2.NORM_MINMAX);
filteredImg = np.uint8(filteredImg)
return filteredImg
if __name__ == '__main__':
# Args handling -> check help parameters to understand
parser = argparse.ArgumentParser(description='Camera calibration')
parser.add_argument('--calibration_file', type=str, required=True, help='Path to the stereo calibration file')
parser.add_argument('--left_source', type=str, required=True, help='Left video or v4l2 device name')
parser.add_argument('--right_source', type=str, required=True, help='Right video or v4l2 device name')
parser.add_argument('--is_real_time', type=int, required=True, help='Is it camera stream or video')
args = parser.parse_args()
# is camera stream or video
if args.is_real_time:
cap_left = cv2.VideoCapture(args.left_source, cv2.CAP_V4L2)
cap_right = cv2.VideoCapture(args.right_source, cv2.CAP_V4L2)
else:
cap_left = cv2.VideoCapture(args.left_source)
cap_right = cv2.VideoCapture(args.right_source)
K1, D1, K2, D2, R, T, E, F, R1, R2, P1, P2, Q = load_stereo_coefficients(args.calibration_file) # Get cams params
if not cap_left.isOpened() and not cap_right.isOpened(): # If we can't get images from both sources, error
print("Can't opened the streams!")
sys.exit(-9)
# Change the resolution in need
cap_right.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # float
cap_right.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # float
cap_left.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # float
cap_left.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # float
while True: # Loop until 'q' pressed or stream ends
# Grab&retreive for sync images
if not (cap_left.grab() and cap_right.grab()):
print("No more frames")
break
_, leftFrame = cap_left.retrieve()
_, rightFrame = cap_right.retrieve()
height, width, channel = leftFrame.shape # We will use the shape for remap
# Undistortion and Rectification part!
leftMapX, leftMapY = cv2.initUndistortRectifyMap(K1, D1, R1, P1, (width, height), cv2.CV_32FC1)
left_rectified = cv2.remap(leftFrame, leftMapX, leftMapY, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)
rightMapX, rightMapY = cv2.initUndistortRectifyMap(K2, D2, R2, P2, (width, height), cv2.CV_32FC1)
right_rectified = cv2.remap(rightFrame, rightMapX, rightMapY, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)
# We need grayscale for disparity map.
gray_left = cv2.cvtColor(left_rectified, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(right_rectified, cv2.COLOR_BGR2GRAY)
disparity_image = depth_map(gray_left, gray_right) # Get the disparity map
# Show the images
cv2.imshow('left(R)', leftFrame)
cv2.imshow('right(R)', rightFrame)
cv2.imshow('Disparity', disparity_image)
if cv2.waitKey(1) & 0xFF == ord('q'): # Get key to stop stream. Press q for exit
break
# Release the sources.
cap_left.release()
cap_right.release()
cv2.destroyAllWindows()