-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProbabilityMatrix.py
185 lines (148 loc) · 6.63 KB
/
ProbabilityMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from collections import Counter
from src.HMM_utils import string_to_numbers, map_alphabet_to_numbers
import numpy as np
class ProbabilityMatrix:
def __init__(self, text):
"""
Initializes the ProbabilityMatrix object with the provided text.
Args:
text (str): The input text.
Raises:
ImportWarning: If the text contains uppercase characters.
"""
self.text = text
self.all_2_chars = []
self.probability_table = {} # store the dictionary
self.probability_matrix = None # store the matrix
self.normalized_matrix = (
None # store the normalized version of the matric, to be used in HMM
)
if self.has_uppercase():
raise ImportWarning(
f"text={text} has upper case. Preprocess it using TextPreProcess class."
)
def has_uppercase(self):
"""
Checks if the text contains uppercase characters.
Returns:
bool: True if the text contains uppercase characters, False otherwise.
"""
return any(char.isupper() for char in self.text)
def break_into_two_chars(self, text):
"""
Breaks the text into two-character sequences.
Args:
text (str): The input text.
Returns:
list: A list of two-character sequences.
"""
return [text[i : i + 2] for i in range(len(text) - 1)]
"""def compute_probability_table(self):
Computes the probability table for all two-character sequences in the text.
The probability is calculated as the count of each sequence divided by the total count of all sequences.
self.all_2_chars = self.break_into_two_chars(self.text)
total_count = sum(Counter(self.all_2_chars).values())
self.probability_table = {
two_char: count / total_count
for two_char, count in Counter(self.all_2_chars).items()
}
# check for missing bigrams in the corpus
minimum = min(self.probability_table.values())
print(minimum)
for x in "abcdefghijklmnopqrstuvwxyz ":
for y in "abcdefghijklmnopqrstuvwxyz ":
if x + y not in self.probability_table:
self.probability_table[x + y] = minimum
elif y + x not in self.probability_table:
self.probability_table[x + y] = minimum"""
def compute_probability_table(self):
"""
Computes the probability table for all two-character sequences in the text.
The probability is calculated as the count of each sequence divided by the total count of all sequences.
"""
# to not recompute all_2_chars, if there is (i.e. if it has been called already by compute_probability_matrix)
if not self.all_2_chars:
self.all_2_chars = self.break_into_two_chars(self.text)
self.probability_table = {
two_char: count / len(self.all_2_chars)
for two_char, count in Counter(self.all_2_chars).items()
}
# check for missing bigrams in the corpus, add them to the dictionary
minimum = min(self.probability_table.values())
# print(minimum)
for x in "abcdefghijklmnopqrstuvwxyz ":
for y in "abcdefghijklmnopqrstuvwxyz ":
if x + y not in self.probability_table:
self.probability_table[x + y] = minimum
elif y + x not in self.probability_table:
self.probability_table[y + x] = minimum
self.probability_table[" "] = 0
def get_probability(self, two_char):
"""
Retrieves the probability of a given two-character sequence. (using probability_table, the dict)
Args:
two_char (str): The two-character sequence.
Returns:
float: The probability of the given two-character sequence.
"""
return self.probability_table[two_char]
def compute_probability_matrix(self):
# to not recompute all_2_chars, if there is (i.e. if it has been called already by compute_probability_table)
if not self.all_2_chars:
self.all_2_chars = self.break_into_two_chars(self.text)
dict = Counter(self.all_2_chars).copy()
for key in Counter(self.all_2_chars).keys():
new_key = str(string_to_numbers(key, map_alphabet_to_numbers()))
dict[new_key] = dict.pop(key)
table = {
two_char: count / len(self.all_2_chars) for two_char, count in dict.items()
}
probability_matrix = np.zeros((27, 27))
for key in table.keys():
i = eval(key)[0]
j = eval(key)[1]
probability_matrix[i, j] = table[key]
self.probability_matrix = np.array(probability_matrix)
minimum = np.min(self.probability_matrix[self.probability_matrix > 0])
# print(minimum)
self.probability_matrix = np.where(
self.probability_matrix == 0, minimum, self.probability_matrix
)
self.probability_matrix[-1, -1] = 0
def compute_normalized_matrix(self):
if self.probability_matrix is None:
self.compute_probability_matrix()
row_sums = self.probability_matrix.sum(axis=1)
# Normalize each row
self.normalized_matrix = self.probability_matrix / row_sums[:, np.newaxis]
def get_probability_mat(self, char_1, char_2):
"""
Returns the probability of char_2 given char_1. (using probability_matrix, the matrix)
Args:
- char_1 (str): The preceding character.
- char_2 (str): The following character.
Returns:
- float: The probability of char_2 given char_1.
"""
alphabet = "abcdefghijklmnopqrstuvwxyz "
idx_1 = alphabet.index(char_1)
idx_2 = alphabet.index(char_2)
return self.probability_matrix[idx_1, idx_2]
def save_probability_table(self):
"""
Saves the probability table to a file named 'probability_table.txt'.
"""
with open("outputs/probability_table.txt", "w") as file:
print(self.probability_table, file=file)
def save_probability_matrix(self):
"""
Saves the probability matrix to a file named 'probability_matrix.txt'.
"""
with open("outputs/probability_matrix.txt", "w") as file:
print(self.probability_matrix, file=file)
def save_all_2_chars(self):
"""
Saves the list of all two-character sequences to a file named 'all_2_chars.txt'.
"""
with open("outputs/all_2_chars.txt", "w") as file:
print(self.all_2_chars, file=file)