-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtime_series.qmd
1208 lines (840 loc) · 24.7 KB
/
time_series.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "time series"
---
```{r}
#| echo: false
#| output: false
#| label: etl
library(tidyverse)
library(timetk)
library(modeltime)
library(tidymodels)
library(sparklyr)
pkgload::load_all("/home/hagan/R/fpaR")
df <- fpaR::contoso_fact_sales %>%
janitor::clean_names() %>%
mutate(
date_key=mdy(date_key)
,rev=sales_quantity*unit_price
)
```
```{r}
#| echo: false
#| label: create-spark
#| eval: TRUE
sc <- spark_connect(master ="local")
df_sdf <- sparklyr::copy_to(sc,df = df,name = "df_spark")
```
# Simplified framework
1. summarize by date column
2. add dimensions that you want in learning
3. check and add correlations
4. feature engineer such as scaling and normalizing data, difference and logging log
5. add time related signatures
6. create test and train data sets for augmentation and back testing too
7. select models
8. tune models
9. create model workflows
10. fit models
# Introduction to key functions
## how to summarize a dataframe by a date dimension
- `summarize_by_time()` works similar to group_by()+summarize
- Easy way to aggregate dimenions by a time signature (daily, weekly, etc)
- You can use across and any other verbs to help with the aggregation
- Date column must be in date format
```{r}
#| echo: false
#| label: summarize-by-time
#| eval: true
#| error: false
#| warning: false
(df_daily <- df %>%
summarise_by_time(
.date_var = date_key # date column
,.by = "day" # aggregation level such as day, month 8 weeks, quarter or year
,rev=sum(rev) # aggregation columns can you across*()
,vol=sum(sales_quantity)
,mean_unit_price=mean(unit_price)
#,.type = ("ceiling","round","floor") optional rounding column
) %>%
mutate(price_realization=rev/vol)
)
```
## how to pad time when there gaps in data series
- `pad_by_time()` use to fill gaps with values in your time series
- Useful when you have gaps in data and need complete time series signatures
```{r}
#| eval: false
#| label: pad-time
df %>%
group_by(store_key) %>%
pad_by_time(
.date_var=date_key
,.pad_value = 0
,.by = "day"
,.fill_na_direction = "down"
,.start_date = ymd("2007-01-01")
)
```
## How to visualize time series
- `plot_time_series()` used to plot times series in either plotly (default), ggplot (set interactive to FALSE) or trelliscope (set .trelleiscope=FALSE)
- If you passed a grouped dataframe you will get faceted polots or alternative you can use the facet_vars argument
- contains additional formatting and plotly arguments
- date_var and value are the most critical
```{r}
df_daily %>%
plot_time_series(
.date_var = date_key
,.value=rev # the column to plot
,.line_color = "red"
,.line_type = "dotted"
,.smooth_period = 30
,.smooth_span = .2 # percentage of data
,.smooth_color = "green"
,.trelliscope = FALSE
,.plotly_slider = FALSE # add in a slider
,.color_var = "black"
,.x_lab = "X aixs title"
,.y_lab = "Y axies title"
,.color_lab = "blue"
,.smooth_alpha = .3
,.title = "Thi is title to the plot"
,.interactive = TRUE
# ,.facet_vars = column_name optional to facet
)
```
## Filter time series
- Use `filter_by_time()` to filter times series with greater flexibility
- you can put a start date with one granularity (2013) and end date with a different (2015-02-01) or use "start" and "end" for the min and max of the dataset
```{r}
#| eval: false
#| label: "filter-ts"
df_daily %>%
filter_by_time(
.date_var=date_key
,.start_date = "2007-06" # or can put 2007 or 2007-12-05
,.end_date ='end' # can use this or specific date
)
```
## split into training and test set
- Similar to tidymodels `split()` this will split a time series
- you assign the split data to an object and use it with tidymodels `train()` and `test()`
- need to set cumulative true if you want the training set to be historical to the assessment period
- You need to clarify where you want the training data to start (eg. at the beginning or end with the aessess and initial arguments as well cumulative)
- Use the `tk_time_series_cv_plan()` and `plot_time_series_cv_plan()` to show the series
```{r}
df_split <- df_daily %>%
time_series_split(
date_var = date_key
,assess = 100 # or "8 weeks" -- this is the testing points straight on the end (when cumulative is set to FALSE)
# ,initial = 300 # This is the training points working back from the testing (when cumulative is set to FALSE)
,point_forecast = FALSE
,cumulative = TRUE # when set to TRUE you just need the assess
)
```
- you can use the `training()` or `testing()` on the split object to get the various split elements
- To view of plot of the split object you first need to pass the split object to `tk_time_series_cv_plan()` and then use `plot_time_Series_cv_plan()`
```{r}
df_split %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(
.date_var = date_key
,.value = rev
,.interactive=FALSE
# ,.smooth = TRUE
,.title="Trainig vs. Testing set"
) +
scale_y_continuous(labels = label_comma(scale=1/1e6,suffix = "M"),limits = c(0,4e6))
```
## create different time series models
- Linear model
```{r}
lm_mod <- linear_reg()
```
- Facbeook's prophet model
```{r}
prophet_mod <- prophet_reg() %>%
set_engine("prophet")
```
### How to use the training set?
- Create recipes
- create modeling frameworks
- Fit models with a recipe (formula + feature engineering) and fit to to data set to training data
- Add models to model time workflow `modeltime_table` (similiar to other workflow
- Use modeltime
- Similar to tidy models framework
- Set data to be training() version of the split
```{r}
lm_fit <- lm_mod %>%
fit(rev~month(date_key)+vol*mean_unit_price,data=training(df_split))
prophet_fit <- prophet_mod %>%
fit(rev~date_key+vol,data=training(df_split))
```
## model time worfklow
### Modeltime_table()
- As you create models you put them together in a table with the `modeltime_table()`
```{r}
model_tbl <- modeltime_table(
lm_fit,
prophet_fit
)
```
### Model_time_calibrate()
- Use this with `modeltime_calibrate()` to calibrate the model against testing dataset
- Set the new_data argument to be the `testing()` argument
- It will label the models with genric name
```{r}
calib_tbl <- model_tbl %>%
modeltime_calibrate(
new_data=testing(df_split)
)
```
- key field is .calibration_data which will have the actual, forecasted and
residuals columns
### how to see model results
- Use the `modetime_forecast()` to see the tables of forecast results and actual date with confidence interfaces
- Need to have actual data (pass it to actual argument)
- Need to have testing data
- Need to transform the xxx data to match the pre-processing steps
- If you pass the calibradated model that has a data already in it you don't need to supply new data
- Use `plot_modeltime_forecast()` to then see the forecast options
- option to view as trillescope.js and other visualization options
```{r}
calib_tbl %>%
modeltime_forecast(
new_data=testing(df_split)
,actual_data = df_daily
,conf_interval = .2 # as forecasting error
) %>%
plot_modeltime_forecast()
```
-
## how to see forecasting accuracy
- Pass the calibrated tbl to `modeltime_accuracy()` to get the common forecasting erorrs
```{r}
calib_tbl %>%
modeltime_accuracy()
```
-
## Feature Engineering
### plot seasonal diagnostics
- Helpful to log plotting variable if there are high outliers
- Use the `plot_seasonal_diagnostics()` to see diagnostics
```{r}
df_store_daily <- df %>%
group_by(store_key) %>%
pad_by_time(
.date_var=date_key
# ,.pad_value = 0
,.by = "day"
# ,.fill_na_direction = c("updown")
,.start_date = ymd("2007-01-01")
,.end_date = ymd("2008-09-30")
) %>%
timetk::summarise_by_time(
.date_var=date_key
,.by = "day"
,rev=sum(rev)
) %>%
ungroup()
seasonality_plots <- df_store_daily %>%
nest_by(store_key) %>%
mutate(
data=list(data)
,plots=
list(
plot_seasonal_diagnostics(
.date_var = date_key
,.value=rev
,.feature_set = c("week")
,.data=data
,.interactive = FALSE
)
)
)
seasonality_plots
```
## How to create formual recipe and pre-processing steps
- you provide the transformation steps here
- be mindful that your training and and testing datasets need the to be converted with the training steps so that when you back test or fits everythign works
- same transformation columns
- ability to transform predictions back to untransformed output
- `step_time_series_signature()`
- take note of the transformation vectors
- you apply the steps to the dataset with prep %>% juicemii
```{r}
df_daily:
rec_basic_raw=recipe(rev~ . ,data=training(df_split))
```
## time series signature
1.3.4 in video --
```{r}
rec_basic=rec_basic_raw %>%
step_timeseries_signature(date_key)
```
# use this to center large variables
step_normalize(index.num,_year)
-typically done with large variables
#remove feautres
`step_rm()`
`step_rm(starts_with(".iso"),ends_with(".xts"),contains("hour"),contains("minute"),contains("second"),"contains("am.pm")`
```{r}
rec_basic=rec_basic %>%
step_rm(
starts_with(".iso")
,ends_with(".xts")
,contains("hour")
,contains("minute")
,contains("second")
,contains("am.pm")
)
```
### add dummy steps
```{r}
rec_basic <- rec_basic %>%
step_dummy(all_nominal_predictors())
```
### how to see model results?
- pass the recipe through to prep() and juice() to see the model time resutls
```{r}
rec_basic %>%
prep() %>%
juice()
```
# overview of EDA
- visualize time series
- plot acf diagnostics (plot_acf_diagnostics)
- auto correaltion
- correlation between predictaors
- plot seasonality to get idea of time attributes (`plot_seasonal_diagnostics()`)
- plot anomaly detection to get an idea of outliers (`plot_anomaly_diagnostics()`)
- get linear model as quickly as you can
## diagnostics functions
### ACF
- helpful to detect correlations between lagged and how many lags to use in a model
- helps us understand if there is lagged version of variable --
- first entry is always one because it is always one vs. one
- set the `.ccf_vars` options to the columns you want to correlate against ( dones't currently work)
```{r}
plot_anomaly_diagnostics()
df_daily %>%
plot_acf_diagnostics(
.date_var=date_key
,.value=rev ## this can be logged
,.lags = 1:10
,.ccf_vars = c(mean_unit_price)
,.interactive = TRUE
# ,.show_ccf_vars_only = TRUE
# ,.show_ccf_vars_only = TRUE
)
```
## sesaonality
- Helpful to see if there are certain seasonality drivers (eg. weekly, monthly, day of month, etc) effect
- helpful to which time signures we want to include in the model or undersatnd more
```{r}
df_daily %>%
plot_seasonal_diagnostics(
.date_var=date_key
,.value = rev
)
```
### anolomy
- helpful to detect and plot anomalies detection
-
plot_anomaly_diagnostics(
.date_var=date_col
.value=value_col
.alpha= .01 #change anomaly sensitivity
.max_anolamoies =.01 # peak anomaly
)
```{r}
df_daily %>%
plot_anomaly_diagnostics(
.date_var = date_key
,.value=rev
,.alpha=.2
)
```
```{r}
df_daily %>%
timetk::tk_anomaly_diagnostics(
.date_var = date_key
,.value=rev
,.alpha = .3
)
```
## seasons decomposition
- Useful to understand how anomoliges are being detcted
- There is a seasonal cycle
- There is a trend cycle
-
## mode diagnosics
detect lagged fuctions
plot_acf_diagnoistcs(
.lags="1 year", 25:100,100
.ccf_vars=columns,
.show_ccf_vars-only=TRUe # ony cross correlations var
,.facet_ncol=number of column
)
```{r}
df_daily %>%
plot_stl_diagnostics(
.date_var=date_key
,.value=rev
,.feature_set = c("season","trend")
)
```
## linear regression plot
- shortcut function of `lm()` to help identify which features are meaningful or not
## uses linear regression
helps ot identify useful features
plot_time_series_regression(
.date_var=data column
.formula= value~ as.numeric(date_col)+
wday(date_col)+
month(date_col)
show_summary= TRUE, shows summary ouptut
)
```{r}
df_daily %>%
plot_time_series_regression(
.date_var = date_key
,.formula = log(rev+1) ~ vol+week(date_key)+mean_unit_price+timetk::lag_vec(date_key,lag=2)+timetk::lag_vec(date_key,lag=3)
,.show_summary = TRUE
# ,show_summary=TRUE
)
```
## transformation functions
- provides time based mutate over time windows this is like group_by + mutate
mutate_by_time(
.by="week"
,formula
)
- applies log +1 to a column
loglp()
- standardize and centers
standarize_vec()
- normalize a vector
timetk::normalize_vec()
- lags a columns
lag_vec( shifts a vector)
- creates many lags against a column
tk_augment_lag(
.lags=1:10
show_summary=TRUE
)
provides time based mutate over time windows this is like group_by + mutate
mutate_by_time(
.by="week"
,formula
transofmration
loglp - applies log
standarize_vec - standardize and centers
tk_index() creates index
tk_make_timeseries makes time table
tk_make_holiday_sequence(
year_start
year_end
clandar
) %>%
tk_get_holiday_signature( converst to grid matrix)
makes future time series
ts_make_future_time_zeries
future_frame(
lengt_out=periods
)
)
)
date_col %-time% "1 day"
date_col %+time% "6 weeks"
## slidify
- Creates function that does a rolling application, like mean, or correlation
- use anonymous function ~ as function definition and then plug in other parameters
- apply that function to a name
- now you can that function as you want normally eg fun_name()
fun_name = slidify(
.f= function that you want ~cor(.x,.y,use="pairwise.complete.obs")
,period= window length
,align=where is the gap
,partial=what to do with partial
)
```{r}
roll_corr_30 <- slidify(
.align = "center"
,.f=~cor(.x,.y)
,.period=30
)
df_daily %>%
mutate(
roll_30_cor=roll_corr_30(.x=vol,.y=mean_up)
,rev_change=diff_vec(rev,lag=1)
,rev_change_prop=rev_change/lag_vec(rev,lag=1)
,roll_30_cor_rev=roll_corr_30(.x=rev_change_prop,.y=roll_30_cor)
) %>%
ggplot(aes(x=date_key,y=roll_30_cor_rev))+
geom_line()+
# geom_line(aes(y=rev_change_prop),col="red")+
scale_x_date(date_breaks = "1 month")
plotly::ggplotly()
```
slidify_vec()
- similar put to a vector
```{r}
#| eval: false
slidify_vec(.x = df_daily$vol,.f=~cor(.x,df_daily$mean_up),period=10,.align = "left")
cor(df_daily$vol,df_daily$mean_up)
prep_df <- df_daily %>%
recipe(rev~.,data=.) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors()) %>%
step_rm(date_key) %>%
prep()
juice_df =prep_df%>%
juice()
tidy_df <- prep_df %>% tidy()
tidy_df
df_daily %>%
recipe(rev~.,data=.) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors()) %>%
step_rm(date_key) %>% tidy()
df %>%
group_by(store_key) %>%
summarise(
rev=sum(rev)
,vol=sum(sales_quantity)
,returns=sum(return_amount)
,discounts=sum(discount_amount)
,.groups = "drop"
) %>%
mutate(across(2:5,~.x/sum(.x))) %>%
recipe(store_key~.,data=.) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors(),num_comp = 3) %>%
prep() %>% juice() %>%
pivot_longer(-1) %>%
mutate(
value=value
,store_key=factor(store_key)
) %>%
filter(store_key %in% 1:10) %>%
ggplot(aes(y=store_key,x=value,fill=store_key))+
geom_col(show.legend = FALSE)+
facet_wrap(~name,nrow = 1,scales = "free")
step_pca()
df %>%
nest_by(store_key) %>%
mutate(
data=list(data)
,n=nrow(data)
,rev=sum(data$rev)
,vol=sum(data$sales_quantity)
,lm_mod=list(lm(rev~sales_quantity,data=data))
) %>%
mutate(
rev_prop=rev/sum(rev)
,cum_rev_prop=cumsum(rev_prop)
,tidy_lm=list(broom::tidy(lm_mod) %>% pull(term))
) %>%
unnest(tidy_lm)
```
- creates differences between a log
- typically used with cumsum for changes in a series
- lag is how far you want to go back
- diff =1 is simple lag (period over period)
- diff=2 is the change in your lagged values, it is the acceleration of difference
diff_vec(
lag
,difference=1 for normal 2 for acceleration
)
```{r}
df_daily %>%
mutate(vol_diff=diff_vec(vol,lag=1,diff=1)
,vol_acc=diff_vec(vol,lag=1,diff=2)
,lag_one=vol-lag(vol,n=1)
,lag_of_lag=lag_one-lag(lag_one,1)
)
343+756
```
- creates forier funcitons, similiar to lag
forier_vec(
period = lag
k=offset
type=cos,sin
)
## Signature
- creates index
tk_index()
makes time table similiar to create date
tk_make_timeseries()
- makes a holiday sequence signatures
tk_make_holiday_sequence(
year_start
year_end
calendar
)
tk_get_holiday_signature()
makes future time series
ts_make_future_time_zeries()
future_frame(
lengt_out=periods
)
# Framework
## Extend forcast window
- scale & normalize variables
- create horizon
- create rolling lag based on horizon
- create rolling periods
basically make sure our dataframe has everything that it needs for future projects (eg. lags and rolling averages)
- tip create rolling lag of forecast period
- add window
bind_rows(
dataframe,
dataframe %>%
future_frame(
.data_var
.length_out)
)
- add lags
tk_augment_lags(
variable
.lags
)
- add rolling averages
tk_augment_slidify(
.value=thing that you want rolling average
.f=mean or whatever
.period= c(30,60,90)
.align="center"
.partial=true
)
- add events
anonlomies and external regressors
- save forecast table as seperate table and historical table as seperate
## split and train
-take historical dataset and assign it to object this is your splits
time_series_split(
assess=time horizon
cumulative=TRUE
)
- validate teh splits are right you can use:
tk_time_series_cv_plan() %>%
plot_time_seris_cv_plan()
## recipe
- can create a base recipe
- to see how these recipes happen use prep() %>% juice() to apply transformats to the dataset
recipe(
formula
data)
%>%
### creates time series seinguatre
step_timeseries_siganture() #
)
### normalize
- consider to normalize time series signatures
step_normalize()
### dummy variables
step_dummy(one_hot=TRUE)
### interaction
step_interaction(~ (col)*(col))
### foriere
- base foriere on lags
step_fourier(date,periods=c(),K=2)
### spline
- need to remove lag and date column if you do this
- step_ns(
ends_with(index.num),deg_free=2
)
### lag
- make sure to remove nas with step_naomit
- lags added with tk_augment_lags
## workflow
-workflow are model management tools
- workflows are data dependent due to reciept spec dependecy
- new data must have the same structure as the unstranformed recipe data
- worlfow should be created for each combination of model & recipe
- fitting a wroflow trains the model & recipe on data
- add model and recipe and can fit
- ensure fit is based on same data as reciept (training)
add_model()
add_reciepe()
fit()
## modeltime
- how you compare and forecast models
- modeltime only works with fitted models that have parsnip and workflow
- basically add to to modetime so you acollection of workflows
- then caolbirate against a dataset (testing)
- then forecast (against against testing set)
- or get accuracy
-add worlflow to model modeltime table
modeltime_table(workflow1,workwlow2)
you can rename model IDs with update_model_description()
- to apply model to different data set (testing), you use modeltime_calibrate
- ensure you same the calibrated table as a new object
modeltime_calibrate(new_data=testing(split))
- use modeltime_forecast to apply model to a forecast (pass calibration table\)
- Need to be mindful that external regressors have column in the forecast table for models
modeltime_forecast(
new_data=testing(splits)
,actual_date=actual_data
,conf_interval=0.0
h= "8 weeks"is horizon can only be used if no external regressors
) %>%
table_modeltime_accuracy(.interactive=FALSE % GT table) # prints to table
- to get accuracy use modeltime_accuracy() (pass calibration data through to it)
modeltime_acurracy(
metric_set=default_forecast_accuracy_metric_set() for defaul metrics or
metrict_set=yardstick::metric_set(list metrics)
)
- plot model time forecast
plot_modeltime_forecast(
.lengend_max_width=25
)
### refit
- use to pass model specs to new data source like your future forecasted dataset
- can use to train data on full dataset
- pass calibration table to modeltime_refit
calibration_tbl %>%
modeltime_refit(data=originaltbl)
### residuals