-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnew_chapter.qmd
935 lines (569 loc) · 19.2 KB
/
new_chapter.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
# Chapter 1: Let's get started
# Named Objects
::: callout-note
in this package, we will use the following libraries
library(tidyverse)
:::
```{r}
#|echo: false
pacman::p_load(tidyverse)
```
### Excel Skills to be covered
In excel, this is for more straight forward -- you simply put the data into cells. Highlight the area and then click insert>table
From there, Its a good practice to name the table (this will make referencing the table much easier and straight forward).
Again for quick and simple analysis and one time analysis -- not necessary
## adding columns to Tables
### In R
In R we can add to our base table by using the dplyr function `mutate()` which basically takes two arguments, the name of the column and the content of the column.
```{r}
tibble(
x=1:10
,y=letters[1:10]
) %>%
mutate(z=1)
```
Probably the most confusing part of this for you will be the name mutate -- it doesn't sound rational or logical but in programming languages there is a concept called mutate where you change an object.
That may or not help you in remembering how to change an object but you will absolutely be using this function alot
Secondly, this is your first introduction to the pipe! It looks funny but soon you will be super addicted to it.
I said there are two key parameters for `mutate()` but actually, there is three mutate(data,column_name,value). However when I used it, I didn't specificy the data object.
That is because the %>% puts the left hand side as the first argument in the right handside function.
so `mutate(tbl,z=1:10)` because `tbl %>% mutate(z=1:10)`. Additionally you can do `tbl |> mutate(.,z=1:10)`.
Ok -- now for a first point of confusion -- you will sometimes see the pipeline written as `|>` and sometimes `%>%`
::: callout-tip
## history
:::
## Tidyselect verbs -- first superpower
```{r}
```
## Adding rows to a table
### In R
You can do the following
- Make a table of values and bind it with `bind_rows()`
-
-
```{r}
dplyr::rows_append(),dplyr::rows_insert(),dplyr::rows_update()
```
### In Excel
Simply add the values you want at the bottom of the table
## Referencing named objects
### In R
use the `ls()` funciton to see all the objects you named
in Excel you use F5
index()
tab references
how to edit named objects
data Entry Form add in
existing data
new series of Numbers
new series of Dates
flash Fill tips
adding/subtracting/dividing/multiplying columns
```{r}
diamonds |>
mutate(ratio=table/depth)
```
one formula works against all rows in a column
rowwise equvalant
colwise equvailant
mean
median
sum
count
aggregate
error handling
iferror()
nA vs. null vs. ref
array \[what did I mean by this\]
## R skills to be covered
tibbles
lists
vectors
dataeditR
arrange()
generating data
-numbers
-letters
-dates
-rep()
-seq()
-mutate
::: {#special .sidebar}
::: warning
here is a warning.
:::
more content.
:::
<<<<<<< HEAD
#tidymodels
split data & sample folds
1. rsample::initial_sample(dataframe,strata=variable)
2. rsample::training(split_data)
3. rsample::testing(split_data)
4. vfold_cv(df_testing, strata = type)
#### recipe to create formula and transform daata
1. recipes::recpe(outcome \~ predictor,data=train_df)
#### select the ml model and type
parsnip::logistic_reg() %\>% set_mode() %\>% set_engine()
### workflow
workflow() %\>% add_recipe(rec) %\>% add_model(mod)
i(rgb) will take the literal names f the columns and apply the colors https://www.youtube.com/watch?v=CTWkJrvfRBc minute 37:42
#### Metadata for columns
resource:
\[link to original source\](https://www.pipinghotdata.com/posts/2022-09-13-the-case-for-variable-labels-in-r/)
penguins_metadata <- tribble(
~variable, ~variable_label,
"species", "Penguin species",
"island", "Island in Palmer Archipelago, Antarctica",
"bill_length_mm", "Bill length (mm)",
"bill_depth_mm", "Bill depth (mm)",
"flipper_length_mm", "Flipper length (mm)",
"body_mass_g", "Body mass (g)",
"sex", "Penguin sex",
"year", "Study year"
)
`labelled::generate_dictionary()`
generates a data dictionary
subsittute labels for points in graph
to substitute variable labels for variable names on your input variables, add [`ggeasy::easy_labs()`](https://jonocarroll.github.io/ggeasy/reference/easy_labs.html) to your ggplot.
penguins_labelled <- penguins |>
set_variable_labels(
species = "Penguin species",
island = "Island in Palmer Archipelago, Antarctica",
bill_length_mm = "Bill length (mm)",
bill_depth_mm = "Bill depth (mm)",
flipper_length_mm = "Flipper length (mm)",
body_mass_g = "Body mass (g)",
sex = "Penguin sex",
year = "Study year"
)
penguins_labelled <- penguins |>
set_variable_labels(!!!penguins_labels)
#### Quarto style guides
as best I can tell there are 3 ways to format presentations
`:::{.args input1="..." input2="...}`
impact text
`:::`
- this appears to reference built in quarto arguments
- they start with .args followed by inputs into that args
{style="args:..."}`
- this appears to reference CSS style arguments
##### Change changing style within string
if you want to edit a single word or string of words **within a string**
[existing text]{style="args:..."}
or if you want to edit a whole string (not just parts of it)
`:::{style="args:..."}`
insert text
`:::`
*popular arguments* (arguments are separate by `;`)
margin-top: 200px;
margin-bottom: 200px;
margin-left: 200px;
margin-right: 200px;
font-size: 3em;
color: red;
background-color:
font-style: italic
border: 4px dotted red;
border-bottom: 4px dotted red;
letter-spacing: 2px;
opacity: 0.3;
padding-left: 50px;
position: (absolute, static,relative);
right:5px;
top: 5px
bottom:
top:
z-index:
##### CSS Examples
##### Section heads
.sectionhead {
font-size: 1em;
text-align: center;
color: $presentation-heading-color;
font-family: $presentation-heading-font;
background-color: $body-bg;
margin: 1px;
padding: 2px 2px 2px 2px;
width: 120px;
border-left: 10px solid;
}
[1] "hello"
a asfds
a dog and elephant
a list of things
a safdfs
aas sdf
b dsfsfa
cadfaa
d adfas
```{r}
```
##### How to complete missing data
###### Set group_by() .drop to FALSE
If data is a factor and you have filtered out the data
(but its listed as level), then you can set the `.drops` argument to `FALSE` in the `group_by()` and `summarize()` pattern and levels that have been filtered or do not have values will show up (by default these are droped `.drop=TRUE`)
```{r}
missing_data <- diamonds %>%
filter(cut!='Ideal')
missing_data %>%
group_by(cut) %>%
summarise(n=n())
```
- Since `Ideal` has been filtered out we don't see it in the table above
- Howver, sometimes we do want to show the values are zero
```{r}
missing_data %>%
group_by(cut,.drop=FALSE) %>%
summarize(n=n())
```
- Setting `.drop` to `FALSE` will now include the missing levels and their count (0)
###### Use complete()
```{r}
missing_data <- mpg %>%
filter(!((manufacturer=='audi')&(year==2008)))
missing_data %>%
count(manufacturer,year)
```
- we see that the `audi` and `2008` are missing as we have filtered it out
- If we want to show these missing missing values, we can use complete() which will look ensure for every value in each column pair, there is entry
```{r}
#shows the missing values
missing_data %>%
count(manufacturer,year) %>%
complete(manufacturer,year)
# replaces the missing values with an entry
missing_data %>%
count(manufacturer,year) %>%
complete(manufacturer,year,fill = list(n=0))
```
original post on [Albert Rapp's Twitter](https://twitter.com/rappa753/status/1611754568123289601)
orkflow
workflow() %\>% add_recipe(rec) %\>% add_model(mod)
=======
`tibble::enframe()` takes a named list and turns into a tibble
>>>>>>> a548534aa2ba9c3ce865bab0e837a2867fc5c783
i(rgb) will take the literal names f the columns and apply the colors https://www.youtube.com/watch?v=CTWkJrvfRBc minute 37:42
#### Metadata for columns
resource:
\[link to original source\](https://www.pipinghotdata.com/posts/2022-09-13-the-case-for-variable-labels-in-r/)
penguins_metadata <- tribble(
~variable, ~variable_label,
"species", "Penguin species",
"island", "Island in Palmer Archipelago, Antarctica",
"bill_length_mm", "Bill length (mm)",
"bill_depth_mm", "Bill depth (mm)",
"flipper_length_mm", "Flipper length (mm)",
"body_mass_g", "Body mass (g)",
"sex", "Penguin sex",
"year", "Study year"
)
`labelled::generate_dictionary()`
generates a data dictionary
subsittute labels for points in graph
to substitute variable labels for variable names on your input variables, add [`ggeasy::easy_labs()`](https://jonocarroll.github.io/ggeasy/reference/easy_labs.html) to your ggplot.
penguins_labelled <- penguins |>
set_variable_labels(
species = "Penguin species",
island = "Island in Palmer Archipelago, Antarctica",
bill_length_mm = "Bill length (mm)",
bill_depth_mm = "Bill depth (mm)",
flipper_length_mm = "Flipper length (mm)",
body_mass_g = "Body mass (g)",
sex = "Penguin sex",
year = "Study year"
)
penguins_labelled <- penguins |>
set_variable_labels(!!!penguins_labels)
#### Quarto style guides
as best I can tell there are 3 ways to format presentations
`:::{.args input1="..." input2="...}`
impact text
`:::`
- this appears to reference built in quarto arguments
- they start with .args followed by inputs into that args
{style="args:..."}`
- this appears to reference CSS style arguments
##### Change changing style within string
if you want to edit a single word or string of words **within a string**
[existing text]{style="args:..."}
or if you want to edit a whole string (not just parts of it)
`:::{style="args:..."}`
insert text
`:::`
*popular arguments* (arguments are separate by `;`)
margin-top: 200px;
margin-bottom: 200px;
margin-left: 200px;
margin-right: 200px;
font-size: 3em;
color: red;
background-color:
font-style: italic
border: 4px dotted red;
border-bottom: 4px dotted red;
letter-spacing: 2px;
opacity: 0.3;
padding-left: 50px;
position: (absolute, static,relative);
right:5px;
top: 5px
bottom:
top:
z-index:
##### CSS Examples
##### Section heads
.sectionhead {
font-size: 1em;
text-align: center;
color: $presentation-heading-color;
font-family: $presentation-heading-font;
background-color: $body-bg;
margin: 1px;
padding: 2px 2px 2px 2px;
width: 120px;
border-left: 10px solid;
}
##### How to complete missing data
###### Set group_by() .drop to FALSE
if data is a factor and you have filtered out the data
(but its listed as level), then you can set the `.drops` argument to `FALSE` in the `group_by()` and `summarize()` pattern and levels that have been filtered or do not have values will show up (by default these are droped `.drop=TRUE`)
```{r}
missing_data <- diamonds %>%
filter(cut!='Ideal')
missing_data %>%
group_by(cut) %>%
summarise(n=n())
```
- Since `Ideal` has been filtered out we don't see it in the table above
- Howver, sometimes we do want to show the values are zero
```{r}
missing_data %>%
group_by(cut,.drop=FALSE) %>%
summarize(n=n())
```
- Setting `.drop` to `FALSE` will now include the missing levels and their count (0)
###### Use complete()
```{r}
missing_data <- mpg %>%
filter(!((manufacturer=='audi')&(year==2008)))
missing_data %>%
count(manufacturer,year)
```
- we see that the `audi` and `2008` are missing as we have filtered it out
- If we want to show these missing missing values, we can use complete() which will look ensure for every value in each column pair, there is entry
```{r}
#shows the missing values
missing_data %>%
count(manufacturer,year) %>%
complete(manufacturer,year)
# replaces the missing values with an entry
missing_data %>%
count(manufacturer,year) %>%
complete(manufacturer,year,fill = list(n=0))
```
original post on [Albert Rapp's Twitter](https://twitter.com/rappa753/status/1611754568123289601)
## How to create new packages
library(devtools)
library(usethis)
create packge in the workspace that you want
devtools::create_package("package_name")
then do usethis::use_r("function_name") to create a script, put yoru function there
then do code>insert roxygen skeleton to comment code
load_all() to load code
# time series & machine learning
## kmeans
- step 1:
organize data into normalied format
whatever we tryign to study (eg. product purchases) then you fill in the percent of that produc tby the dimenion you want (customer), eg customer by product
- step 2:
use kmeans function with table and initial group selection
-only can have numeric input (so create with explantory varibale then deselect variable (eg. customers))
kmeans_obj = kmeans(nomarlized_tbl,
centers=num__of_groups,
iter.max=something,
nstarts= higher is better (say 100))
kmeans_obj$center = all various centers
kmeans_obj$cluster=classify each obs to a clsuter
step 3: apply kmeans_obj to data
broom::augment(kmeans_obj,normalized_tbl)
step4: how to intrpret
tot.withinss is metric of total squared varition (lower is better),
broom::glance(kmeans_obj)]
g
- step5 optimze by setting up a grid
create function that calcules kmeans with cneters (and nstarts if you want) to be iterated with an input table and pipe this into glance
- plot tot.withinss and cneters to see which centers is optimized
# kmeans example
```{r}
devtools::load_all("/home/hagan/R/fpaR")
sales_by_store_product <- fpaR::contoso_fact_sales %>%
janitor::clean_names() %>%
mutate(sales_amount=unit_price*sales_quantity) %>%
group_by(store_key,product_key) %>%
summarise(sum_usd=sum(sales_amount),.groups = "drop") %>%
arrange(product_key) %>%
group_by(store_key) %>%
mutate(prop_usd=sum_usd/sum(sum_usd)) %>%
select(store_key,product_key,prop_usd) %>%
pivot_wider(names_from=product_key,values_from=prop_usd,values_fill = 0,names_repair = janitor::make_clean_names)
kmeans_obj <- sales_by_store_product %>%
select(-store_key) %>%
kmeans(centers=15,nstart=100,iter.max = 100)
stores_with_kmeans <- kmeans_obj %>% broom::augment(data=sales_by_store_product)
kmeans_obj %>% broom::glance()
kmeans_mapper <- function(centers=3) {
sales_by_store_product %>% kmeans(x=.,centers=centers,nstart = 100,iter.max=100)
}
grid_kmeans <- tibble(centers=1:15) %>%
mutate(kmeans_obj=map(.x=centers,~kmeans_mapper(.x)),
kmeans_output=map_df(kmeans_obj,broom::glance)
)
grid_kmeans %>%
unnest(kmeans_output) %>%
select(centers,tot.withinss) %>%
ggplot(aes(x=centers,y=tot.withinss))+
geom_point()+
geom_line()
```
## umap
very simliar to kmeans just without addition arguments
stregth is merge the kmeans output with the kmeans output so that you can mpa them together
then manually inspect original data frame by the new clusters to see what patterns or attributes (eg. can sort by some cumsum and attributes to look for patterns)
step1
- use same normalized model
- only select numeric data
- pass through to umeans
step2
- take hte umeans$layout covert to tibble, rename columns and bind with framing column
```{r}
library(umap)
umap_obj <- sales_by_store_product %>%
select(-store_key) %>%
umap()
umap_tbl <- umap_obj$layout %>%
as_tibble() %>%
set_names(c("x","y")) %>%
bind_cols(sales_by_store_product) %>%
select(store_key,x,y)
umap_tbl %>%
ggplot(aes(x,y))+
geom_point()
kmeans_result_tbl <- grid_kmeans %>%
filter(centers==8) %>%
pull(kmeans_obj) %>%
pluck(1) %>% broom::augment(sales_by_store_product) %>%
relocate(last_col()) %>%
select(.cluster,store_key)
kmeans_result_tbl %>%
left_join(umap_tbl,by="store_key") %>%
ggplot(aes(x=x,y=y,col=.cluster))+
geom_point()
```
## assert that
assertthat packageschecks if column names are in a dataframe
## combine umeans and kmeans
### data masking
sym() is used to take a quoted input "x" and use it in a context without quotes. Need !!sym("x") to be used
or rlang::englue("var) within the .data[[var]] context
.data[[rlang::englue("var")]]
.env$var to refer to grid table
```{r}
library(tidyverse)
col_numbers <- 1:ncol(diamonds)
map(
.x=col_numbers
,.f=~diamonds[.x:10]
)
split(diamonds, ~ cut) %>%
map(
.x=.
,~.x %>% pull(price) %>% sum) %>%
stack()
map(
.x=col_numbers
,.f = ~mtcars[.x] %>% table()
)
```
```{r}
library(tidyverse)
df <- readr::read_csv("/home/hagan/Downloads/pop23.csv",name_repair = janitor::make_clean_names) %>%
filter(
sex!=0
,age<99
)
extract_year_make_longer <- function(.data,.col) {
.data %>%
select(
age
,sex
,any_of(
c({{.col}})
)
) %>%
pivot_longer(-c(1:2)) %>%
mutate(year=parse_number(name)) %>%
select(-name)
}
col_names <- c("popestimate2020","popestimate2021","popestimate2022")
list_df <- map(col_names,~extract_year_make_longer(df,.x))
df_20 <- list_df[[1]] %>% as_tibble() %>% rename(pop20=value) %>% select(sex,age,pop20)
df_21 <- list_df[[2]] %>%
as_tibble() %>%
mutate(age_20=age-1) %>%
filter(age_20>-1) %>%
select(age_20,value,sex) %>%
rename(pop_21=value)
df_22 <- list_df[[3]] %>%
as_tibble() %>%
mutate(age_20=age-2) %>%
filter(age_20>-1) %>%
select(age_20,value,sex) %>%
rename(pop22=value)
left_join(df_20,
df_21,
join_by(age==age_20
,sex==sex)) %>%
left_join(df_22,
join_by( age==age_20
,sex==sex)) %>%
mutate(
one_year_delta=pop_21-pop20
,two_year_delta=pop22-pop20
) %>%
ggplot(aes(y=two_year_delta,x=age,fill=factor(sex,labels = c("male","female"))))+
geom_col()+
geom_vline(xintercept = 18,linetype="dotted",size=1, color="grey")+
geom_vline(xintercept = 65, size=1, color="grey")+
scale_x_continuous(n.breaks=30)+
scale_y_continuous(labels = scales::label_comma(scale=1/1e6,suffix="M"))+
scale_fill_manual(values=c(male="midnightblue",female="firebrick"))+
theme_classic()+
labs(
fill="Gender"
,title="Two year change in population by age group"
)
```
df_2021_spk <- df_spk %>%
select(age,sex,popestimate2021)
df_2022_spk <- df_spk %>%
select(age,sex,popestimate2022)
df_spk %>%
filter(
age<99
,sex!=0
) %>%
ggplot(aes(y=popestimate2022,x=age,fill=factor(sex)))+
geom_col()+
geom_vline(xintercept = 18,linetype="dotted")+
geom_vline(xintercept = 75,linetype="dotted")+
scale_x_continuous(n.breaks = 30)
# geom_col(aes(y=popestimate2020),col="blue",alpha=.2)
# expand dates
# Create columns for year, month and day for each date
# column in a data.frame
expand_dates <- function(x, parts = c("year", "month", "day")) {
funs <- list(year = year, month = month, day = day)[parts]
mutate(x, across(where(lubridate::http://is.Date), funs))
}
```