-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharchitectures.py
71 lines (53 loc) · 2.58 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from typing import List
import torch
import torch.nn as nn
class SimpleAutoencoder(nn.Module):
def __init__(self, activation_function: nn.Module, hidden_layers: List[int], verbose: bool = False) -> None:
super(SimpleAutoencoder, self).__init__()
self.seq = nn.Sequential()
n_neurons_in = 115
n_in = n_neurons_in
for i, n_out in enumerate(hidden_layers):
self.seq.add_module('fc' + str(i), nn.Linear(n_in, n_out, bias=True))
self.seq.add_module('act_fn' + str(i), activation_function())
n_in = n_out
self.seq.add_module('final_fc', nn.Linear(n_in, n_neurons_in, bias=True))
if verbose:
print(self.seq)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.seq(x)
class Threshold(nn.Module):
# This class is only a wrapper around the threshold that allows to use directly the federated aggregation on it.
def __init__(self, threshold: torch.Tensor):
super(Threshold, self).__init__()
self.threshold = nn.Parameter(threshold, requires_grad=False)
class BinaryClassifier(nn.Module):
def __init__(self, activation_function: nn.Module, hidden_layers: List[int], verbose: bool = False) -> None:
super(BinaryClassifier, self).__init__()
self.seq = nn.Sequential()
n_neurons_in = 115
n_in = n_neurons_in
for i, n_out in enumerate(hidden_layers):
self.seq.add_module('fc' + str(i), nn.Linear(n_in, n_out, bias=True))
self.seq.add_module('act_fn' + str(i), activation_function())
n_in = n_out
self.seq.add_module('final_fc', nn.Linear(n_in, 1, bias=True))
self.seq.add_module('sigmoid', nn.Sigmoid())
if verbose:
print(self.seq)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.seq(x)
class NormalizingModel(nn.Module):
def __init__(self, model: torch.nn.Module, sub: torch.Tensor, div: torch.Tensor) -> None:
super(NormalizingModel, self).__init__()
self.sub = nn.Parameter(sub, requires_grad=False)
self.div = nn.Parameter(div, requires_grad=False)
self.model = model
# Manually change normalization values
def set_sub_div(self, sub: torch.Tensor, div: torch.Tensor) -> None:
self.sub = nn.Parameter(sub, requires_grad=False)
self.div = nn.Parameter(div, requires_grad=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(self.normalize(x))
def normalize(self, x: torch.Tensor) -> torch.Tensor:
return (x - self.sub) / self.div