-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbose_chaudhuri_hocquenghem_encoder.hh
152 lines (144 loc) · 4.02 KB
/
bose_chaudhuri_hocquenghem_encoder.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
Bose Chaudhuri Hocquenghem Encoder
Copyright 2018 Ahmet Inan <[email protected]>
*/
#pragma once
#include <initializer_list>
#include "bitman.hh"
namespace CODE {
template <int LEN, int MSG>
class BoseChaudhuriHocquenghemEncoder
{
public:
static const int N = LEN, K = MSG, NP = N - K;
static const int G = ((NP+1)+7)/8;
private:
uint8_t generator[G];
static constexpr uint8_t slb1(uint8_t *buf, int pos)
{
return (buf[pos]<<1) | (buf[pos+1]>>7);
}
public:
BoseChaudhuriHocquenghemEncoder(std::initializer_list<int> minimal_polynomials)
{
// $generator(x) = \prod_i(minpoly_i(x))$
int generator_degree = 1;
for (int i = 0; i < G; ++i)
generator[i] = 0;
set_be_bit(generator, NP, 1);
for (auto m: minimal_polynomials) {
assert(0 < m);
int m_degree = 0;
while (m>>m_degree)
++m_degree;
--m_degree;
assert(generator_degree + m_degree <= NP + 1);
for (int i = generator_degree; i >= 0; --i) {
if (!get_be_bit(generator, NP-i))
continue;
set_be_bit(generator, NP-i, m&1);
for (int j = 1; j <= m_degree; ++j)
xor_be_bit(generator, NP-(i+j), (m>>j)&1);
}
generator_degree += m_degree;
}
assert(generator_degree == NP + 1);
if (0) {
std::cerr << "generator =";
for (int i = 0; i <= NP; ++i)
std::cerr << " " << get_be_bit(generator, NP-i);
std::cerr << std::endl;
}
for (int i = 0; i < NP; ++i)
set_be_bit(generator, i, get_be_bit(generator, i+1));
set_be_bit(generator, NP, 0);
}
void operator()(const uint8_t *data, uint8_t *parity, int data_len = K)
{
assert(0 < data_len && data_len <= K);
// $code = data * x^{NP} + (data * x^{NP}) \mod{generator}$
for (int l = 0; l <= (NP-1)/8; ++l)
parity[l] = 0;
for (int i = 0; i < data_len; ++i) {
if (get_be_bit(data, i) != get_be_bit(parity, 0)) {
for (int l = 0; l < (NP-1)/8; ++l)
parity[l] = generator[l] ^ slb1(parity, l);
parity[(NP-1)/8] = generator[(NP-1)/8] ^ (parity[(NP-1)/8]<<1);
} else {
for (int l = 0; l < (NP-1)/8; ++l)
parity[l] = slb1(parity, l);
parity[(NP-1)/8] <<= 1;
}
}
}
};
template <int ROOTS, int FCR, int MSG, typename GF>
class BoseChaudhuriHocquenghemEncoderReference
{
public:
typedef typename GF::value_type value_type;
typedef typename GF::ValueType ValueType;
typedef typename GF::IndexType IndexType;
static const int NR = ROOTS;
static const int N = GF::N, K = MSG, NP = N - K;
private:
ValueType generator[NP+1];
public:
BoseChaudhuriHocquenghemEncoderReference(std::initializer_list<int> minimal_polynomials)
{
// $generator(x) = \prod_i(minpoly_i(x))$
int generator_degree = 1;
generator[0] = ValueType(1);
for (int i = 1; i <= NP; ++i)
generator[i] = ValueType(0);
for (auto m: minimal_polynomials) {
assert(0 < m && m < 1<<(GF::M+1));
int m_degree = GF::M;
while (!(m>>m_degree))
--m_degree;
assert(generator_degree + m_degree <= NP + 1);
for (int i = generator_degree; i >= 0; --i) {
if (!generator[i])
continue;
generator[i] = ValueType(m&1);
for (int j = 1; j <= m_degree; ++j)
generator[i+j] += ValueType((m>>j)&1);
}
generator_degree += m_degree;
}
assert(generator_degree == NP + 1);
if (0) {
IndexType root(FCR), pe(1);
for (int i = 0; i < NR; ++i) {
ValueType tmp(generator[NP]);
for (int j = 1; j <= NP; ++j)
tmp = fma(root, tmp, generator[NP-j]);
assert(!tmp);
root *= pe;
}
std::cerr << "generator =";
for (int i = 0; i <= NP; ++i)
std::cerr << " " << (int)generator[i];
std::cerr << std::endl;
}
}
void operator()(const ValueType *data, ValueType *parity, int data_len = K)
{
assert(0 < data_len && data_len <= K);
// $code = data * x^{NP} + (data * x^{NP}) \mod{generator}$
for (int i = 0; i < NP; ++i)
parity[i] = ValueType(0);
for (int i = 0; i < data_len; ++i) {
if (data[i] != parity[0]) {
for (int j = 1; j < NP; ++j)
parity[j-1] = generator[NP-j] + parity[j];
parity[NP-1] = generator[0];
} else {
for (int j = 1; j < NP; ++j)
parity[j-1] = parity[j];
parity[NP-1] = ValueType(0);
}
}
}
};
}