-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDPLM.m
91 lines (76 loc) · 2.69 KB
/
DPLM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
% This is the supervised version of the DPLM algorithm which
% needs the labels. Please cite the following paper if you use
% this code:
% Davoudi, Alireza, Saeed Shiry Ghidary, and Khadijeh Sadatnejad.
% "Dimensionality reduction based on distance preservation to local
% mean for symmetric positive definite matrices and its application
% in brain–computer interfaces." Journal of Neural Engineering 14.3
% (2017): 036019.
%
% PARAMS:
% data: An m*m*n dimensional matrix which contains n SPD matrix of size m*m
% dim : The dimensionality of SPD matrices after DM
% labels : A verctor of size n which contains the label of each point
% k : Number of neighbours
% Adj : The adjacency matrix calculated by `DPLM_adjmat` function
% M : The means matrix calculated by `DPLM_adjmat` function
%
% RETUTNS:
% U : The calculated transformation matrix which can be used as
% below to transform an m*m SPD matrix `x` to an dim*dim
% SPD matrix y:
% y = U'*x*U
% obj : Final value of the objective function
% Adj : The adjacency matrix calculated by `DPLM_adjmat` function
% M : The means matrix calculated by `DPLM_adjmat` function
%
function [U, obj, Adj, M] = DPLM( data, labels, dim, k, varargin )
if(~isempty(varargin))
Adj = varargin{1};
M = varargin{2};
if(length(varargin) > 2)
verbose = varargin{3};
else
verbose = 1;
end
else
[ Adj, M ] = DPLM_adjmat( data, labels, k );
verbose = 1;
end
u0 = randn(size(data, 1), dim);
u0 = orth(u0);
opts.record = verbose;
opts.mxitr = 1000;
opts.xtol = .1;
opts.gtol = .1;
opts.ftol = .1;
%obj.tau = 1e-3;
%opts.nt = 1;
t = tic;
[U, obj]= OptStiefelGBB(u0, @objfunc, opts);
tsolve = toc(t);
if(verbose)
[f,~] = objfunc(u0);
[flast,~] = objfunc(U);
fprintf('Elapsed time: %f\n', tsolve);
fprintf('Stoped: %s , Init f: %f, Last f: %f \n',obj.msg, f, flast);
end
function [F, G] = objfunc(u)
F = 0;
G = 0;
for i = 1:size(data, 3)
for j = 1:size(data, 3)
if(Adj(i,j) == 0)
continue;
end
Ft = distance_ld(data(:,:,j),M(:,:,i))...
-distance_ld(u' * data(:,:,j) * u, u' * M(:,:,i) * u);
F = F + abs(Ft);
G = G -sign(Ft) * (2 * (data(:,:,j) + M(:,:,i)) * u ...
* inv( u' * (data(:,:,j) + M(:,:,i)) * u) ...
- data(:,:,j) * u * inv(u' * data(:,:,j) * u) ...
- M(:,:,i) * u * inv(u' * M(:,:,i) * u));
end
end
end
end