forked from sebbbi/OffsetAllocator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoffsetAllocator.cpp
486 lines (405 loc) · 16.3 KB
/
offsetAllocator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// (C) Sebastian Aaltonen 2023
// MIT License (see file: LICENSE)
#include "offsetAllocator.hpp"
#ifdef DEBUG
#include <assert.h>
#define ASSERT(x) assert(x)
//#define DEBUG_VERBOSE
#else
#define ASSERT(x)
#endif
#ifdef DEBUG_VERBOSE
#include <stdio.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstring>
namespace OffsetAllocator
{
inline uint32 lzcnt_nonzero(uint32 v)
{
#ifdef _MSC_VER
unsigned long retVal;
_BitScanReverse(&retVal, v);
return 31 - retVal;
#else
return __builtin_clz(v);
#endif
}
inline uint32 tzcnt_nonzero(uint32 v)
{
#ifdef _MSC_VER
unsigned long retVal;
_BitScanForward(&retVal, v);
return retVal;
#else
return __builtin_ctz(v);
#endif
}
namespace SmallFloat
{
static constexpr uint32 MANTISSA_BITS = 3;
static constexpr uint32 MANTISSA_VALUE = 1 << MANTISSA_BITS;
static constexpr uint32 MANTISSA_MASK = MANTISSA_VALUE - 1;
// Bin sizes follow floating point (exponent + mantissa) distribution (piecewise linear log approx)
// This ensures that for each size class, the average overhead percentage stays the same
uint32 uintToFloatRoundUp(uint32 size)
{
uint32 exp = 0;
uint32 mantissa = 0;
if (size < MANTISSA_VALUE)
{
// Denorm: 0..(MANTISSA_VALUE-1)
mantissa = size;
}
else
{
// Normalized: Hidden high bit always 1. Not stored. Just like float.
uint32 leadingZeros = lzcnt_nonzero(size);
uint32 highestSetBit = 31 - leadingZeros;
uint32 mantissaStartBit = highestSetBit - MANTISSA_BITS;
exp = mantissaStartBit + 1;
mantissa = (size >> mantissaStartBit) & MANTISSA_MASK;
uint32 lowBitsMask = (1 << mantissaStartBit) - 1;
// Round up!
if ((size & lowBitsMask) != 0)
mantissa++;
}
return (exp << MANTISSA_BITS) + mantissa; // + allows mantissa->exp overflow for round up
}
uint32 uintToFloatRoundDown(uint32 size)
{
uint32 exp = 0;
uint32 mantissa = 0;
if (size < MANTISSA_VALUE)
{
// Denorm: 0..(MANTISSA_VALUE-1)
mantissa = size;
}
else
{
// Normalized: Hidden high bit always 1. Not stored. Just like float.
uint32 leadingZeros = lzcnt_nonzero(size);
uint32 highestSetBit = 31 - leadingZeros;
uint32 mantissaStartBit = highestSetBit - MANTISSA_BITS;
exp = mantissaStartBit + 1;
mantissa = (size >> mantissaStartBit) & MANTISSA_MASK;
}
return (exp << MANTISSA_BITS) | mantissa;
}
uint32 floatToUint(uint32 floatValue)
{
uint32 exponent = floatValue >> MANTISSA_BITS;
uint32 mantissa = floatValue & MANTISSA_MASK;
if (exponent == 0)
{
// Denorms
return mantissa;
}
else
{
return (mantissa | MANTISSA_VALUE) << (exponent - 1);
}
}
}
// Utility functions
uint32 findLowestSetBitAfter(uint32 bitMask, uint32 startBitIndex)
{
uint32 maskBeforeStartIndex = (1 << startBitIndex) - 1;
uint32 maskAfterStartIndex = ~maskBeforeStartIndex;
uint32 bitsAfter = bitMask & maskAfterStartIndex;
if (bitsAfter == 0) return Allocation::NO_SPACE;
return tzcnt_nonzero(bitsAfter);
}
// Allocator...
Allocator::Allocator(uint32 size, uint32 maxAllocs) :
m_size(size),
m_maxAllocs(maxAllocs),
m_nodes(nullptr),
m_freeNodes(nullptr)
{
if (sizeof(NodeIndex) == 2)
{
ASSERT(maxAllocs <= 65536);
}
reset();
}
Allocator::Allocator(Allocator &&other) :
m_size(other.m_size),
m_maxAllocs(other.m_maxAllocs),
m_freeStorage(other.m_freeStorage),
m_usedBinsTop(other.m_usedBinsTop),
m_nodes(other.m_nodes),
m_freeNodes(other.m_freeNodes),
m_freeOffset(other.m_freeOffset)
{
memcpy(m_usedBins, other.m_usedBins, sizeof(uint8) * NUM_TOP_BINS);
memcpy(m_binIndices, other.m_binIndices, sizeof(NodeIndex) * NUM_LEAF_BINS);
other.m_nodes = nullptr;
other.m_freeNodes = nullptr;
other.m_freeOffset = 0;
other.m_maxAllocs = 0;
other.m_usedBinsTop = 0;
}
void Allocator::reset()
{
m_freeStorage = 0;
m_usedBinsTop = 0;
m_freeOffset = m_maxAllocs - 1;
for (uint32 i = 0 ; i < NUM_TOP_BINS; i++)
m_usedBins[i] = 0;
for (uint32 i = 0 ; i < NUM_LEAF_BINS; i++)
m_binIndices[i] = Node::unused;
if (m_nodes) delete[] m_nodes;
if (m_freeNodes) delete[] m_freeNodes;
m_nodes = new Node[m_maxAllocs];
m_freeNodes = new NodeIndex[m_maxAllocs];
// Freelist is a stack. Nodes in inverse order so that [0] pops first.
for (uint32 i = 0; i < m_maxAllocs; i++)
{
m_freeNodes[i] = m_maxAllocs - i - 1;
}
// Start state: Whole storage as one big node
// Algorithm will split remainders and push them back as smaller nodes
insertNodeIntoBin(m_size, 0);
}
Allocator::~Allocator()
{
delete[] m_nodes;
delete[] m_freeNodes;
}
Allocation Allocator::allocate(uint32 size)
{
// Out of allocations?
if (m_freeOffset == 0)
{
return {.offset = Allocation::NO_SPACE, .metadata = Allocation::NO_SPACE};
}
// Round up to bin index to ensure that alloc >= bin
// Gives us min bin index that fits the size
uint32 minBinIndex = SmallFloat::uintToFloatRoundUp(size);
uint32 minTopBinIndex = minBinIndex >> TOP_BINS_INDEX_SHIFT;
uint32 minLeafBinIndex = minBinIndex & LEAF_BINS_INDEX_MASK;
uint32 topBinIndex = minTopBinIndex;
uint32 leafBinIndex = Allocation::NO_SPACE;
// If top bin exists, scan its leaf bin. This can fail (NO_SPACE).
if (m_usedBinsTop & (1 << topBinIndex))
{
leafBinIndex = findLowestSetBitAfter(m_usedBins[topBinIndex], minLeafBinIndex);
}
// If we didn't find space in top bin, we search top bin from +1
if (leafBinIndex == Allocation::NO_SPACE)
{
topBinIndex = findLowestSetBitAfter(m_usedBinsTop, minTopBinIndex + 1);
// Out of space?
if (topBinIndex == Allocation::NO_SPACE)
{
return {.offset = Allocation::NO_SPACE, .metadata = Allocation::NO_SPACE};
}
// All leaf bins here fit the alloc, since the top bin was rounded up. Start leaf search from bit 0.
// NOTE: This search can't fail since at least one leaf bit was set because the top bit was set.
leafBinIndex = tzcnt_nonzero(m_usedBins[topBinIndex]);
}
uint32 binIndex = (topBinIndex << TOP_BINS_INDEX_SHIFT) | leafBinIndex;
// Pop the top node of the bin. Bin top = node.next.
uint32 nodeIndex = m_binIndices[binIndex];
Node& node = m_nodes[nodeIndex];
uint32 nodeTotalSize = node.dataSize;
node.dataSize = size;
node.used = true;
m_binIndices[binIndex] = node.binListNext;
if (node.binListNext != Node::unused) m_nodes[node.binListNext].binListPrev = Node::unused;
m_freeStorage -= nodeTotalSize;
#ifdef DEBUG_VERBOSE
printf("Free storage: %u (-%u) (allocate)\n", m_freeStorage, nodeTotalSize);
#endif
// Bin empty?
if (m_binIndices[binIndex] == Node::unused)
{
// Remove a leaf bin mask bit
m_usedBins[topBinIndex] &= ~(1 << leafBinIndex);
// All leaf bins empty?
if (m_usedBins[topBinIndex] == 0)
{
// Remove a top bin mask bit
m_usedBinsTop &= ~(1 << topBinIndex);
}
}
// Push back reminder N elements to a lower bin
uint32 reminderSize = nodeTotalSize - size;
if (reminderSize > 0)
{
uint32 newNodeIndex = insertNodeIntoBin(reminderSize, node.dataOffset + size);
// Link nodes next to each other so that we can merge them later if both are free
// And update the old next neighbor to point to the new node (in middle)
if (node.neighborNext != Node::unused) m_nodes[node.neighborNext].neighborPrev = newNodeIndex;
m_nodes[newNodeIndex].neighborPrev = nodeIndex;
m_nodes[newNodeIndex].neighborNext = node.neighborNext;
node.neighborNext = newNodeIndex;
}
return {.offset = node.dataOffset, .metadata = nodeIndex};
}
void Allocator::free(Allocation allocation)
{
ASSERT(allocation.metadata != Allocation::NO_SPACE);
if (!m_nodes) return;
uint32 nodeIndex = allocation.metadata;
Node& node = m_nodes[nodeIndex];
// Double delete check
ASSERT(node.used == true);
// Merge with neighbors...
uint32 offset = node.dataOffset;
uint32 size = node.dataSize;
if ((node.neighborPrev != Node::unused) && (m_nodes[node.neighborPrev].used == false))
{
// Previous (contiguous) free node: Change offset to previous node offset. Sum sizes
Node& prevNode = m_nodes[node.neighborPrev];
offset = prevNode.dataOffset;
size += prevNode.dataSize;
// Remove node from the bin linked list and put it in the freelist
removeNodeFromBin(node.neighborPrev);
ASSERT(prevNode.neighborNext == nodeIndex);
node.neighborPrev = prevNode.neighborPrev;
}
if ((node.neighborNext != Node::unused) && (m_nodes[node.neighborNext].used == false))
{
// Next (contiguous) free node: Offset remains the same. Sum sizes.
Node& nextNode = m_nodes[node.neighborNext];
size += nextNode.dataSize;
// Remove node from the bin linked list and put it in the freelist
removeNodeFromBin(node.neighborNext);
ASSERT(nextNode.neighborPrev == nodeIndex);
node.neighborNext = nextNode.neighborNext;
}
uint32 neighborNext = node.neighborNext;
uint32 neighborPrev = node.neighborPrev;
// Insert the removed node to freelist
#ifdef DEBUG_VERBOSE
printf("Putting node %u into freelist[%u] (free)\n", nodeIndex, m_freeOffset + 1);
#endif
m_freeNodes[++m_freeOffset] = nodeIndex;
// Insert the (combined) free node to bin
uint32 combinedNodeIndex = insertNodeIntoBin(size, offset);
// Connect neighbors with the new combined node
if (neighborNext != Node::unused)
{
m_nodes[combinedNodeIndex].neighborNext = neighborNext;
m_nodes[neighborNext].neighborPrev = combinedNodeIndex;
}
if (neighborPrev != Node::unused)
{
m_nodes[combinedNodeIndex].neighborPrev = neighborPrev;
m_nodes[neighborPrev].neighborNext = combinedNodeIndex;
}
}
uint32 Allocator::insertNodeIntoBin(uint32 size, uint32 dataOffset)
{
// Round down to bin index to ensure that bin >= alloc
uint32 binIndex = SmallFloat::uintToFloatRoundDown(size);
uint32 topBinIndex = binIndex >> TOP_BINS_INDEX_SHIFT;
uint32 leafBinIndex = binIndex & LEAF_BINS_INDEX_MASK;
// Bin was empty before?
if (m_binIndices[binIndex] == Node::unused)
{
// Set bin mask bits
m_usedBins[topBinIndex] |= 1 << leafBinIndex;
m_usedBinsTop |= 1 << topBinIndex;
}
// Take a freelist node and insert on top of the bin linked list (next = old top)
uint32 topNodeIndex = m_binIndices[binIndex];
uint32 nodeIndex = m_freeNodes[m_freeOffset--];
#ifdef DEBUG_VERBOSE
printf("Getting node %u from freelist[%u]\n", nodeIndex, m_freeOffset + 1);
#endif
m_nodes[nodeIndex] = {.dataOffset = dataOffset, .dataSize = size, .binListNext = topNodeIndex};
if (topNodeIndex != Node::unused) m_nodes[topNodeIndex].binListPrev = nodeIndex;
m_binIndices[binIndex] = nodeIndex;
m_freeStorage += size;
#ifdef DEBUG_VERBOSE
printf("Free storage: %u (+%u) (insertNodeIntoBin)\n", m_freeStorage, size);
#endif
return nodeIndex;
}
void Allocator::removeNodeFromBin(uint32 nodeIndex)
{
Node &node = m_nodes[nodeIndex];
if (node.binListPrev != Node::unused)
{
// Easy case: We have previous node. Just remove this node from the middle of the list.
m_nodes[node.binListPrev].binListNext = node.binListNext;
if (node.binListNext != Node::unused) m_nodes[node.binListNext].binListPrev = node.binListPrev;
}
else
{
// Hard case: We are the first node in a bin. Find the bin.
// Round down to bin index to ensure that bin >= alloc
uint32 binIndex = SmallFloat::uintToFloatRoundDown(node.dataSize);
uint32 topBinIndex = binIndex >> TOP_BINS_INDEX_SHIFT;
uint32 leafBinIndex = binIndex & LEAF_BINS_INDEX_MASK;
m_binIndices[binIndex] = node.binListNext;
if (node.binListNext != Node::unused) m_nodes[node.binListNext].binListPrev = Node::unused;
// Bin empty?
if (m_binIndices[binIndex] == Node::unused)
{
// Remove a leaf bin mask bit
m_usedBins[topBinIndex] &= ~(1 << leafBinIndex);
// All leaf bins empty?
if (m_usedBins[topBinIndex] == 0)
{
// Remove a top bin mask bit
m_usedBinsTop &= ~(1 << topBinIndex);
}
}
}
// Insert the node to freelist
#ifdef DEBUG_VERBOSE
printf("Putting node %u into freelist[%u] (removeNodeFromBin)\n", nodeIndex, m_freeOffset + 1);
#endif
m_freeNodes[++m_freeOffset] = nodeIndex;
m_freeStorage -= node.dataSize;
#ifdef DEBUG_VERBOSE
printf("Free storage: %u (-%u) (removeNodeFromBin)\n", m_freeStorage, node.dataSize);
#endif
}
uint32 Allocator::allocationSize(Allocation allocation) const
{
if (allocation.metadata == Allocation::NO_SPACE) return 0;
if (!m_nodes) return 0;
return m_nodes[allocation.metadata].dataSize;
}
StorageReport Allocator::storageReport() const
{
uint32 largestFreeRegion = 0;
uint32 freeStorage = 0;
// Out of allocations? -> Zero free space
if (m_freeOffset > 0)
{
freeStorage = m_freeStorage;
if (m_usedBinsTop)
{
uint32 topBinIndex = 31 - lzcnt_nonzero(m_usedBinsTop);
uint32 leafBinIndex = 31 - lzcnt_nonzero(m_usedBins[topBinIndex]);
largestFreeRegion = SmallFloat::floatToUint((topBinIndex << TOP_BINS_INDEX_SHIFT) | leafBinIndex);
ASSERT(freeStorage >= largestFreeRegion);
}
}
return {.totalFreeSpace = freeStorage, .largestFreeRegion = largestFreeRegion};
}
StorageReportFull Allocator::storageReportFull() const
{
StorageReportFull report;
for (uint32 i = 0; i < NUM_LEAF_BINS; i++)
{
uint32 count = 0;
uint32 nodeIndex = m_binIndices[i];
while (nodeIndex != Node::unused)
{
nodeIndex = m_nodes[nodeIndex].binListNext;
count++;
}
report.freeRegions[i] = { .size = SmallFloat::floatToUint(i), .count = count };
}
return report;
}
}