diff --git a/experiments/mnist/mnist_0_scaled_14_linf_lognormal_gpu.yaml b/experiments/mnist/mnist_0_scaled_14_linf_lognormal_gpu.yaml index 6f604e2..b2a4d40 100644 --- a/experiments/mnist/mnist_0_scaled_14_linf_lognormal_gpu.yaml +++ b/experiments/mnist/mnist_0_scaled_14_linf_lognormal_gpu.yaml @@ -20,12 +20,13 @@ experiments: trial_config: logging: images: true - "image_shape": [10, 10] + "image_shape": [14, 14] dataset: &dataset __object__: src.explib.datasets.MnistSplit scale: true digit: 0 device: *device + scale_factor: 2 epochs: &epochs 200000 patience: &patience 40 batch_size: &batch_size @@ -35,7 +36,7 @@ experiments: __class__: torch.optim.Adam params: lr: - __eval__: tune.loguniform(1e-7, 1e-4) + __eval__: tune.loguniform(1e-6, 1e-4) weight_decay: 0.0 model_cfg: type: @@ -52,17 +53,17 @@ experiments: coupling_layers: &coupling_layers __eval__: tune.choice([i for i in range(3, 4)]) coupling_nn_layers: &coupling_nn_layers - __eval__: "tune.choice([[w] * l for l in [1, 2, 3] for w in [100, 200, 300]])" # tune.choice([[c*32, c*16, c*8, c*16, c*32] for c in [1, 2, 3, 4]] + [[c*64, c*32, c*64] for c in range(1,5)] + [[c*128] * 2 for c in range(1,5)] + [[c*256] for c in range(1,5)]) + __eval__: "tune.choice([[w] * l for l in [1, 2, 3] for w in [196, 392]])" # tune.choice([[c*32, c*16, c*8, c*16, c*32] for c in [1, 2, 3, 4]] + [[c*64, c*32, c*64] for c in range(1,5)] + [[c*128] * 2 for c in range(1,5)] + [[c*256] for c in range(1,5)]) nonlinearity: &nonlinearity __eval__: tune.choice([torch.nn.ReLU()]) - split_dim: 50 + split_dim: 98 base_distribution: __object__: src.veriflow.distributions.RadialDistribution device: *device p: __eval__: math.inf loc: - __eval__: torch.zeros(100).to("cuda") + __eval__: torch.zeros(196).to("cuda") norm_distribution: __object__: pyro.distributions.LogNormal loc: @@ -70,55 +71,3 @@ experiments: scale: __eval__: (0.5 * torch.ones(1)).to("cuda") use_lu: false - - &mnist_logNormal_linf_loc_12_scale_05_medium_sized - __overwrites__: *mnist_logNormal_linf_loc_1_scale_05_medium_sized - name: mnist_logNormal_linf_loc_12_scale_05_medium_sized - trial_config: - model_cfg: - params: - base_distribution: - norm_distribution: - __object__: pyro.distributions.LogNormal - loc: - __eval__: (1.2 * torch.ones(1)).to("cuda") - scale: - __eval__: (0.5 * torch.ones(1)).to("cuda") - - &mnist_logNormal_linf_loc_08_scale_05_medium_sized - __overwrites__: *mnist_logNormal_linf_loc_1_scale_05_medium_sized - name: mnist_logNormal_linf_loc_08_scale_05_medium_sized - trial_config: - model_cfg: - params: - base_distribution: - norm_distribution: - __object__: pyro.distributions.LogNormal - loc: - __eval__: (0.8 * torch.ones(1)).to("cuda") - scale: - __eval__: (0.5 * torch.ones(1)).to("cuda") - - &mnist_logNormal_linf_loc_1_scale_03_medium_sized - __overwrites__: *mnist_logNormal_linf_loc_1_scale_05_medium_sized - name: mnist_logNormal_linf_loc_1_scale_03_medium_sized - trial_config: - model_cfg: - params: - base_distribution: - norm_distribution: - __object__: pyro.distributions.LogNormal - loc: - __eval__: (1 * torch.ones(1)).to("cuda") - scale: - __eval__: (0.3 * torch.ones(1)).to("cuda") - - &mnist_logNormal_linf_loc_1_scale_07_medium_sized - __overwrites__: *mnist_logNormal_linf_loc_1_scale_05_medium_sized - name: mnist_logNormal_linf_loc_1_scale_07_medium_sized - trial_config: - model_cfg: - params: - base_distribution: - norm_distribution: - __object__: pyro.distributions.LogNormal - loc: - __eval__: (1 * torch.ones(1)).to("cuda") - scale: - __eval__: (0.7 * torch.ones(1)).to("cuda") \ No newline at end of file