description |
---|
Learn how Flowise integrates with LiteLLM Proxy |
Use LiteLLM Proxy with Flowise to:
- Load balance Azure OpenAI/LLM endpoints
- Call 100+ LLMs in the OpenAI Format
- Use Virtual Keys to set budgets, rate limits and track usage
LiteLLM Requires a config with all your models defined - we will call this file litellm_config.yaml
Detailed docs on how to setup litellm config - here
model_list:
- model_name: gpt-4
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key:
- model_name: gpt-4
litellm_params:
model: azure/gpt-4
api_key:
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
- model_name: gpt-4
litellm_params:
model: azure/gpt-4
api_key:
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml --detailed_debug
On success, the proxy will start running on http://localhost:4000/
In Flowise, specify the standard OpenAI nodes (not the Azure OpenAI nodes) -- this goes for chat models, embeddings, llms -- everything
- Set
BasePath
to LiteLLM Proxy URL (http://localhost:4000
when running locally) - Set the following headers
Authorization: Bearer <your-litellm-master-key>