-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathHamming Distance.cpp
178 lines (151 loc) · 2.9 KB
/
Hamming Distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/* Faced the problem in GOCC 21 SWE Google Grad */
/* You are given two arrays A and B (consider 1-based indexed). Both have N integers.
You are given M list of pairs of indices, whose val can be swapped in array A only.
For example (i, j) 1 <= i, j <= N , you can swap a[i] and a[j]
The hamming distance between two arrays is the count of indexes where A[i] NOT equal to B[i].
You can swap the M pairs (as many times as you want, includung zero), Find the minimum Hamming Distance.
Input :
N, M
Array A
Array B
.
.
.M pairs
Output :
Single Integer(H. D)
I/O displayed at end.
Code Below ->
*/
/* nuttela - Soham Chakrabarti */
#include <bits/stdc++.h>
using namespace std;
#define io ios_base::sync_with_stdio(false);cin.tie(NULL)
#define all(v) v.begin(),v.end()
#define pb push_back
#define ins insert
#define rep(i,j,k) for(ll i=j;i<k;i++)
#define per(i,j,k) for(ll i=j;i>=k;--i)
#define scan(a,n) rep(i,0,n)cin>>a[i]
#define input freopen("input.txt","r",stdin)
#define output freopen("output.txt","w",stdout)
#define error freopen("error.txt","w",stderr)
#define ff first
#define ss second
typedef long long int ll;
typedef unsigned long long ull;
typedef long double ld;
const int N = 1e6+1;
const int MAX = 1e6+1;
const int ALPHA = 26;
const int inf = INT_MAX;
const int mod = 1e9+7;
ll powm(ll a,ll b) {ll res=1LL;while(b) {if(b&1)res=(res*a)%mod;a=(a*a)%mod;b>>=1;}return res;}
ll modmult(ll a,ll b) {ll r=0;a%=mod;while(b){if(b&1)r=(r+a)%mod;a=(a<<1)%mod;b>>=1;}return r;}
ll modexpo(ll a,ll b) {ll r=1;a%=mod;while(b){if(b&1)r=(r*a)%mod;a=(a*a)%mod;b>>=1;}return r;}
ll a[MAX], b[MAX];
vector<ll> g[MAX], vis1(MAX), vis2(MAX);
multiset<int> el;
int ans;
void dfs1(int u) {
vis1[u]=1;
el.insert(a[u]);
for(auto &x:g[u]) {
if(!vis1[x])dfs1(x);
}
}
void dfs2(int u) {
vis2[u]=1;
if(el.count(b[u])) {
el.erase(el.lower_bound(b[u]));
}
else
++ans;
for(auto &x:g[u]) {
if(!vis2[x])dfs2(x);
}
}
int32_t main() {
io;
// input; output;
int t;
cin>>t;
while(t--) {
int n,m;
ans=0;
el.clear();
cin>>n>>m;
scan(a,n);
scan(b,n);
rep(i,0,m) {
int u,v;
cin>>u>>v;
--u,--v;
if(u!=v) {
g[u].pb(v);
g[v].pb(u);
}
}
rep(i,0,n) {
if(!vis1[i]) {
dfs1(i);
dfs2(i);
el.clear();
}
}
rep(i,0,MAX) {
g[i].clear();
vis1[i]=vis2[i]=0;
}
cout<<ans<<endl;
}
return 0;
}
/*
Input
6
5 4
1 5 9 2 3
2 4 5 1 3
1 4
2 3
3 5
2 5
6 5
8 8 6 5 4 8
5 3 8 2 6 8
6 1
4 5
6 3
2 1
2 4
6 5
4 8 8 2 7 10
5 5 7 10 7 7
3 4
3 6
2 2
3 5
5 3
5 2
1 9 8 5 1
4 10 1 7 8
1 4
4 1
8 2
9 7 1 4 10 7 9 10
10 1 7 8 9 4 6 4
6 2
6 6
7 2
5 9 3 10 9 5 5
2 10 1 8 9 2 1
3 6
1 5
output:
1
2
4
5
8
6
*/